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Introduction 
Newton-Cotes integration methods are numerical methods for integration. These 

methods calculate the estimate of an integral using either an array of function 

values or by calculating the function values at different points within the 

integration interval. This article focuses on the latter type. 

Newton-Cotes integrals fall into two categories—closed and open. Closed integrals 

calculate the integrals for the interval (α, β) using values at the interval’s ends and 

values in between. This class of integrals assume that the integrated function, f(x), 

can be calculated at any point in the interval (α, β). Open integrals calculate the 

integrals for an interval (α, β) using values strictly inside that interval. This class of 

integrals assume that the integrated function, f(x), cannot be calculated at either or 

both interval ends. Open Newton-Cotes integrals are less accurate than their closed 

counterpart when using the same integration step sizes. However, they can estimate 

the integrals of a function f(x) where f(α) and/or f(β) cannot be calculated! 

Popular closed Newton-Cotes integrals include the Trapezoidal rule, Simpson’s 

rule, Simpson’s 3/8 rule, and Boole’s rule. Popular (but less known) open Newton-

Cotes integrals include the Trapezoid method and Milne’s rules. 

This paper introduces you to a new category of numerical integration methods that 

are a mix between the open and closed Newton-Cotes integrals. The new hybrid 

algorithms calculate the value of the integrated function at one end of the interval 

(α, β). This approach works when either f(α) or f(β) cannot be calculated. 

I used MATLAB’s symbolic computation features to assist me in quickly and 

accurately derive the equations used in numerical integration. Such a wonderful 

tool allowed me to rederive equations and perform corrections, quickly and 

painlessly, when needed. The MATLAB symbolic computation empowered me to 

pursue the new algorithms in greater variety. See Appendix A for sample 

MATLAB scripts that I used. 
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 In this paper, I present pseudo-code for various integration algorithms. I 

focus on applying these algorithms to each (i.e. inside) integration step 

size h, and not across the integration interval (α, β) where you make a 

single function evaluation per integration step. I assume that α – β is an 

integer multiple of the integration step size h. As such, the pseudo-code 

is ready for implementing the chained versions of the various 

algorithms. 
 

Translating the pseudo-code into working subroutine functions (in your 

preferred programming language) will cause the executing code to 

perform more evaluations of the integrated functions, at the benefit of 

more accurate answers than traditional integration schemes that make a 

single function evaluations per integration step—which you can also 

implement. In the day and age of fast CPU, the additional CPU effort 

should not be a burden. Of course you can always adapt the algorithms 

to make single function evaluation per integration step. 

The Three-Point Hybrid Newton-Cotes Integral 
This section presents two three-points hybrid Newton-Cotes integration methods. 

Let me first reintroduce Milne’s method which is the comparable Open Newton-

Cotes integration method: 

Given f(x), the integration interval (A, B) and the increment h. 

X = A 

Sum = 0 

Do 

  X1 = X + 0.25 * h 

  X2 = X + 0.5 * h 

  X3 = X + 0.75 * h 

  Sum = Sum + 2 * f(X1) - f(X2) + 2 * f(X3) 

  X = X + h 

Loop Until X > B 

Integral = Sum * h / 3 
 

The above method samples at (h/4, y1), (h/2, y2), and (3h/4, y3) within a given 

integration step h. Throughout this study, I use the approach where I apply the 

algorithm for each integration step h. 

The left-anchor three-points hybrid Newton-Cotes integration method uses the 

following equation: 
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Integral = (Y1 + 3*Y3)*h/4 
 

For an integral that samples at (0, y1), (h/3, y2), and (2h/3, y3) within a given 

integration step h. This new algorithm calculates function values starting at α and 

moving upward close to, but never reaching, β, where f(β) is undefined. The 

pseudo-code for this algorithm is: 

Given f(x), the integration interval (A, B) and the increment h. 

X = A 

Sum = 0 

Do 

  X1 = X + 0.25 * h 

  X2 = X + 0.5 * h 

  X3 = X + 0.75 * h 

  Sum = Sum + f(X1) + 3 * f(X3) 

  X = X + h 

Loop Until X > B 

Integral = Sum * h / 4 
 

Here is another version of the left-anchor (let’s call it extended left-anchor) method 

that samples at (0, y1), (9h/20, y2), and (9h/10, y3). The equation is: 

Integral = (38 * Y1 + 140 * Y2 + 65 * Y3)*h/243 
 

The pseudo-code for this algorithm is: 

Given f(x), the integration interval (A, B) and the increment h. 

X = A 

Sum = 0 

Do 

  X1 = X 

  X2 = X + 9 * h / 20 

  X3 = X + 9 * h / 10 

  Sum = Sum + 38 * f(X1) + 140 * f(X2) + 65 * f(X3) 

  X = X + h 

Loop Until X > B 

Integral = Sum * h / 243 
 

The right-anchor three-points hybrid Newton-Cotes integration method uses the 

following equation: 

Integral = (3*y1 + y3)*h/4 
 

For an integral that samples at (h/3, y1), (2h/3, y2), and (h, y3) within a given 

integration step h. This version calculates values starting just above the lower 

integration interval, α, and includes the value at the upper interval end, β. This 
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method works for integrals where f(α) is undefined. The pseudo-code for this 

algorithm is: 

Given f(x), the integration interval (A, B) and the increment h. 

X = A 

Sum = 0 

Do 

  X1 = X + h/3 

  X2 = X + 2 * h/3 

  X3 = X + h 

  Sum = Sum + 3 * f(X1) + f(X3) 

  X = X + h 

Loop Until X > B 

Integral = Sum * h / 4 
 

An extended right-anchor method samples the points (h/10, y1),  (11h/20, y2), and 

(h, y3). The equation used is: 

Integral = (65 * Y1 + 140 * Y2 + 38 * Y3)*h/243 
 

The pseudo-code for this algorithm is: 

Given f(x), the integration interval (A, B) and the increment h. 

X = A 

Sum = 0 

Do 

  X1 = X 

  X2 = X + 9 * h / 20 

  X3 = X + 9 * h / 10 

  Sum = Sum + 65 * f(X1) + 140 * f(X2) + 38 * f(X3) 

  X = X + h 

Loop Until X > B 

Integral = Sum * h / 243 
 

So how do the left-anchor and right-anchor methods perform compared to each 

other and compared to Milne’s method? Table 1 shows a summary of results for a 

sample of test functions. The table entries are the differences in absolute percent 

errors between any two algorithms. The errors are calculated for different integral 

intervals and also for different integration steps. The first seven functions were 

defined for all the points at the end of the integration interval. The function ln(x) 

(the function before last) is not defined at the start of the integration interval, x=0. 

The function ln(10-x) (the last function) is not defined at the end of the integration 

interval, x=10. 
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f(x) Diff ABS % 

Err of 

Milne’s 

method - 

Left-Anchor  

Diff ABS % Err  

of Milne’s method 

- Right-Anchor  

Diff ABS % Err  

of Left-Anchor - 

Right-Anchor 

1/x -0.00015 4.43756E-07 0.000147913 

ln(x)/x -0.00022 -0.000427003 -0.00020681 

1/(1+x^4) 4.55E-05 -4.69589E-05 -9.2498E-05 

1/(1+exp(x)) -0.11928 0.009789866 0.129068906 

x * sin(30 * x) * cos(x) -9.8E-06 -9.40563E-06 4.32939E-07 

1/x^4 0.068319 -0.00501006 -0.07332909 

x/ln(x) -2.7E-05 -9.1289E-06 1.78373E-05 

ln(x)  -0.014986359  

ln(10-x) -0.008715121   

Table 1. Comparing three-point integral methods. 

Looking at the values in Table 1, I can say that the three methods give practically 

(or statistically speaking, if you prefer) comparable results. In the case of the last 

two functions, the absolute differences in percent error are a bit higher, because we 

are dealing with functions with one end of the integration interval is undefined. 

What about the extended left-anchor and extended right-anchor compared with the 

Milne method? Table 2 shows the same type of results as in Table 1.  

f(x) Diff ABS % 

Err of 

Milne’s 

method - 

Left-Anchor  

Diff ABS % Err  

of Milne’s method 

- Right-Anchor  

Diff ABS % Err  

of Left-Anchor - 

Right-Anchor 

1/x -1.47825E-05 1.67735E-07 1.49503E-05 

ln(x)/x -1.3008E-05 -2.30907E-05 -1.0083E-05 

1/(1+x^4) 3.49789E-06 -4.90769E-06 -8.4056E-06 

1/(1+exp(x)) 9.08736E-07 -4.22528E-07 -1.3313E-06 

x * sin(30 * x) * cos(x) -8.7485E-07 -8.36932E-07 3.79225E-08 

1/x^4 0.0404723 0.004779989 -0.03569235 

x/ln(x) -2.5354E-06 -5.24364E-07 2.01099E-06 

ln(x)  0.017635792  

ln(10-x) 0.010255871   

Table 2. Comparing three-point extended integral methods. 
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The values, for the first seven test functions, in Table 2 are smaller than their 

counterparts in Table 1. This difference is due to the fact that the extended left-

anchor and extended right-anchor methods sample more of the integration step h. 

As such these extended algorithms are better than the regular left and right anchor 

methods that I presented earlier. 

The Four-Point Hybrid Newton-Cotes Integral 
This section presents two four-points hybrid Newton-Cotes integration methods. 

Let me first introduce an unnamed method (according to Wikipedia) which is the 

comparable Open Newton-Cotes integration method: 

Given f(x), the integration interval (A, B) and the increment h. 

X = A 

Sum = 0 

Do 

  X1 = X + 0.2 * h 

  X2 = X + 0.4 * h 

  X3 = X + 0.6 * h 

  X4 = X + 0.8 * h 

  Sum = Sum + 11 * f(X1) + f(X2) + f(X3) + 11 * f(X4) 

  X = X + h 

Loop Until X > B 

Integral = Sum * h / 24 
 

The above method samples at (2h/10, y1), (4h/10,y2), (6h/10, y3), and (8h/10, y4) 

within a given step. 

The left-anchor four-points hybrid Newton-Cotes integration method uses the 

following equation: 

Integral = (17 * y1 + 60 * y2 + 45 * y3 + 40 * y4)*h/162 
 

For an integral that samples at (0, y1), (3h/10, y2), (6h/10, y3), and (9h/10, y4) 

within a given step. This version calculates function values starting at α and 

moving upward close to, but never reaching, β. The pseudo-code for this algorithm 

is: 

Given f(x), the integration interval (A, B) and the increment h. 

X = A 

Sum = 0 

Do 

  X1 = X 

  X2 = X + 3 * h / 10 

  X3 = X + 6 * h / 10 
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  X4 = X + 9 * h / 10 

     

  Sum = Sum + 17 * f(X1) + 60 * f(X2) + 45 * f(X3) + 

              40 * f(X4)   

  X = X + h 

Loop Until X > B 

Integral = Sum * h / 162 
 

The right-anchor four-points hybrid Newton-Cotes integration method uses the 

following equation: 

Integral = (40 * y1 + 45 * y2 + 60 * y3 + 17 * y4)*h/162 
 

For an integral that samples at (h/10, y1),  (4h/10, y2), (7h/10, y3), and (h, y4) 

within a given step. This version calculates values starting just higher than the 

lower integration interval, α, and includes the value at the upper interval end, β. 

The pseudo-code for this algorithm is: 

Given f(x), the integration interval (A, B) and the increment h. 

X = A 

Sum = 0 

Do 

  X1 = X + h / 10 

  X2 = X + 4 * h / 10 

  X3 = X + 7 * h / 10 

  X4 = X + h 

  Sum = Sum + 40 * f(X1) + 45 * f(X2) + 60 * f(X3) +  

              17 * f(X4)   

  X = X + h 

Loop Until X > B 

Integral = Sum * h / 162 
 

Again, we ask how do the four-point left-anchor and right-anchor methods perform 

compared to each other and compared to the unnamed method? Table 3 shows a 

summary of results for a sample of test functions. The table entries are the 

differences in absolute percent errors between any two algorithms. The errors are 

calculated for different integral intervals and also for different integration steps. 
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f(x) Diff ABS % 

Err of 

Milne’s 

method - 

Left-Anchor  

Diff ABS % Err  

of Milne’s method 

- Right-Anchor  

Diff ABS % Err  

of Left-Anchor - 

Right-Anchor 

1/x -3.73308E-07 -3.15975E-07 5.7333E-08 

ln(x)/x 6.70469E-06 6.83118E-06 1.26483E-07 

1/(1+x^4) -3.4935E-07 -3.9745E-07 -4.81005E-08 

1/(1+exp(x)) 1.29374E-07 1.29645E-07 2.71092E-10 

x * sin(30 * x) * cos(x) 6.09862E-09 6.09568E-09 -2.93771E-12 

1/x^4 0.00373444 0.00073932 -0.0029951 

x/ln(x) 6.38385E-08 7.47017E-08 1.08631E-08 

ln(x)  0.013072584  

ln(10-x) 0.007602195   

Table 3. Comparing four-point integral methods. 

The results of Table 3 pretty much agree with those in Tables 1 and 2. The three 

methods give practically comparable results. 

Enhancing Open Newton Cotes Methods 
This bonus section presents enhanced open Newton-Cotes method that I used 

earlier in this paper to compare with the new hybrid Newton-Cotes methods. 

Enhancing the Milne Method 

I used Milne’s method earlier in this article and compared it with various hybrid 

Newton-Cotes methods. Milne’s method samples at (h/4, y1), (h/2, y2) and (3h/4, 

y3) in the integration step h. In this bonus section I present a Modified Milne 

method that samples at (h/10, y1), (h/2, y2), (9h/10, y3) in the integration step h.  

The modified method covers a wider interval in the integration step h, than the 

original method. The equation for the Modified Milne method is: 

Integral = (25*y1 + 46*y2 + 25*y3)*h/96 
 

The pseudo-code for the Modified Milne method is: 

Given f(x), the integration interval (A, B) and the increment h. 

X = A 

Sum = 0 

Do 

  X1 = X + h / 10 

  X2 = X + 4 * h / 10 

  X3 = X + 7 * h / 10 
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  Sum = Sum + 25 * f(X1) + 456 * f(X2) + 25 * f(X3) +  

  X = X + h 

Loop Until X > B 

Integral = Sum * h / 96 
 

I tested the Modified Milne method with the regular one using the seven test 

functions listed in the tables of this paper. In 7 out of 9 cases, the Modified Milne 

method performed better than the original method. So, if you are going to stick 

with the Milne method, I comfortably recommend the Modified Milne method that 

uses three points. 

Before we wrap things up in this section, let’s take the Milne method to an 

extreme. This new scheme samples at (h/100, y1), (h/2, y2), (99h/100, y3) in the 

integration step h. The equation for the Modified Milne method is: 

Integral = (1250*y1 + 4703*y2 + 1250*y3)*h/7203 
 

The pseudo-code for the Extreme Modified Milne method is: 

Given f(x), the integration interval (A, B) and the increment h. 

X = A 

Sum = 0 

Do 

  X1 = X + h / 100 

  X2 = X + h / 2 

  X3 = X + 99 * h / 100 

  Sum = Sum + 1250 * f(X1) + 4703 * f(X2) + 1250 * f(X3)  

  X = X + h 

Loop Until X > B 

Integral = Sum * h / 4703 
 

I tested the Extreme Milne method with the regular one using the seven test 

functions listed in the tables of this paper. In 6 out of 9 cases, the Extreme Milne 

method performed better than the original method. Thus, I also recommend the 

Extreme Milne method that uses three points. 

What about the difference between the Modified Milne method and the Extreme 

Milne method? The test involving the seven functions shows, surprisingly, mixed 

results with no clear winner between the two methods. It seems both methods 

cover a wide enough part of the integration step h. 

Enhancing the Four-Point Unnamed Method 

In this section I introduced an enhanced version of the four-point unnamed (open 

Newton-Cotes) integration method. I will call this one the four-point Shammas 

method since it is based on an unnamed method. The basic scheme for the 
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Shammas method samples function values at (h/10, y1), (34h/100, y2), (67h/100, 

y3), and (9h/10, y4). The equation for this method is: 

Integral = [(4033 * Y1) / 17496 + (32200 * Y2) / 115911 +  

            (575 * Y3) / 2187 + (97 * Y4) / 424]*h 
 

The pseudo-code for this algorithm is: 

Given f(x), the integration interval (A, B) and the increment h. 

X = A 

Sum = 0 

Do 

  X1 = X + h / 10 

  X2 = X + 37 * h / 100 

  X3 = X + 64 * h / 100 

  X4 = X + 9 * h / 10   

  Y1 = f(X1) 

  Y2 = f(X2) 

  Y3 = f(X3) 

  Y4 = f(X4) 

  Sum = Sum + (4033 * Y1) / 17496 + (32200 * Y2) / 115911 +  

              (575 * Y3) / 2187 + (97 * Y4) / 424   

  X = X + h 

Loop Until X > B 

Integral = Sum * h 
 

As expected, the Shammas method performs better than (in 6 out of 7 test function 

cases) the unnamed method because it samples from a wider interval in the 

integration step h. 

Conclusion 
This short paper introduces you to a whole new category of numerical integration 

comparable to the open Newton-Cotes integration methods. The paper offers you 

six hybrid Newton-Cotes integration methods that you can add to your repertoire 

of open integration methods that deal with integrals where either the lower or the 

upper integral values cannot be calculated for the integrated function. 

To choose between open Newton-Cotes methods and their hybrid counterpart, I 

suggest the following calibration. Test your target functions with sample 

parameters and known integrals using both types of integration methods. After 

comparing the results, select the type of Newton-Cotes method that generated less 

error in your calibration test. Apply that method for problems that you are working 

with. 
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You can use the same approach that I presented to derive hybrid Newton-Cotes 

integration methods that use five or more points in the integration schemes. You 

can also create your own versions of the three-point and four-point methods by 

tweaking the sampling points within the integration step h. The best scheme is to 

have equidistant sampling points that either start at (x=0) or end at (x=h) the 

integration interval.   

Deriving hybrid (and even open) Newton-Cotes methods that cover as wide as 

possible integration steps yield more accurate methods. This enhancement is true, 

because the hybrid and open Newton-Cotes methods approach the same interval of 

values incorporated in closed Newton-Cotes methods. Stated as a general limit we 

can say: 

lim
 𝛾→1

𝑂𝑝𝑒𝑛 𝑁𝐶 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝛼, 𝛽, 𝛾ℎ) = 𝐶𝑙𝑜𝑠𝑒𝑑 𝑁𝐶 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝛼, 𝛽, ℎ) 

lim
 𝛾→1

𝐻𝑦𝑏𝑟𝑖𝑑 𝑁𝐶 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝛼, 𝛽, 𝛾ℎ) = 𝐶𝑙𝑜𝑠𝑒𝑑 𝑁𝐶 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝛼, 𝛽, ℎ) 

The first two parameters, 𝛼 𝑎𝑛𝑑 𝛽, define the integration interval. Parameter h is 

the integration step size. Parameter 𝛾 is the fraction of the step size h covered by 

the interpolation polynomials used to calculate the equation for numerical 

integration. 

The paper also introduced you to two variants of the Milne methods and a variant 

of the unnamed method. These variants generally perform better than the original 

versions since their interpolative polynomials cover a wider range of the 

integration steps.  

Appendix A 
This appendix shows sample MATLAB scripts that I used to generate the formulas 

for numerical integration. The first script is for the left-anchored hybrid Newton-

Cotes method: 

syms a b c d h y1 y2 y3 y4 

% (0,y1), (3h/`0,y2), (6h/10, y3), (9/10h, y4) 

eqn1 = d == y1 

eqn2 = a*((3*h/10)^3) + b*((3*h/10)^2) + c*(3*h/10) + d == y2 

eqn3 = a*((6*h/10)^3) + b*((6*h/10)^2) + c*(6*h/10) + d  == y3 

eqn4 = a*((9*h/10)^3) + b*((9*h/10)^2) + c*(9*h/10)+ d  == y4 

[A,B] = equationsToMatrix([eqn1, eqn2, eqn3, eqn4], [a, b, c, 

d]) 

X=linsolve(A,B) 
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fprintf('Leaving out h factor out we get\n') 

Area = 1/4*X(1)*h^3 + 1/3*X(2)*h^2 +1/2*X(3)*h + X(4) 

  

% Output is 

% 

% Leaving out h factor out we get 

% 

% Area = 

%  

% (17*y1)/162 + (10*y2)/27 + (5*y3)/18 + (20*y4)/81 
 

The next MATLAB script is for the right-anchored hybrid Newton-Cotes method: 

syms a b c d h y1 y2 y3 y4 

% (h/10,y1), (4h/10, y2), (7/10h, y3), (h, y4) 

eqn1 = a*((h/10)^3) + b*((h/10)^2) + c*(h/10) + d == y1 

eqn2 = a*((4*h/10)^3) + b*((4*h/10)^2) + c*(4*h/10) + d  == y2 

eqn3 = a*((7*h/10)^3) + b*((7*h/10)^2) + c*(7*h/10)+ d  == y3 

eqn4 = a*h^3 + b*h^2 + c*h + d  == y4 

[A,B] = equationsToMatrix([eqn1, eqn2, eqn3, eqn4], [a, b, c, 

d]) 

X=linsolve(A,B) 

fprintf('Leaving out h factor out we get\n') 

Area = 1/4*X(1)*h^3 + 1/3*X(2)*h^2 +1/2*X(3)*h + X(4) 

  

% output is 

% 

% Leaving out h factor out we get 

%   

% Area = 

%   

% (20*y1)/81 + (5*y2)/18 + (10*y3)/27 + (17*y4)/162 

 

 

 

 


