
Hybrid Newton-Cotes Integrals 1

Copyright © 2017 by Namir Clement Shammas Version 1.1

Hybrid Newton-Cotes Integrals
By

Namir C. Shammas

Introduction
Newton-Cotes integration methods are numerical methods for integration. These

methods calculate the estimate of an integral using either an array of function

values or by calculating the function values at different points within the

integration interval. This article focuses on the latter type.

Newton-Cotes integrals fall into two categories—closed and open. Closed integrals

calculate the integrals for the interval (α, β) using values at the interval’s ends and

values in between. This class of integrals assume that the integrated function, f(x),

can be calculated at any point in the interval (α, β). Open integrals calculate the

integrals for an interval (α, β) using values strictly inside that interval. This class of

integrals assume that the integrated function, f(x), cannot be calculated at either or

both interval ends. Open Newton-Cotes integrals are less accurate than their closed

counterpart when using the same integration step sizes. However, they can estimate

the integrals of a function f(x) where f(α) and/or f(β) cannot be calculated!

Popular closed Newton-Cotes integrals include the Trapezoidal rule, Simpson’s

rule, Simpson’s 3/8 rule, and Boole’s rule. Popular (but less known) open Newton-

Cotes integrals include the Trapezoid method and Milne’s rules.

This paper introduces you to a new category of numerical integration methods that

are a mix between the open and closed Newton-Cotes integrals. The new hybrid

algorithms calculate the value of the integrated function at one end of the interval

(α, β). This approach works when either f(α) or f(β) cannot be calculated.

I used MATLAB’s symbolic computation features to assist me in quickly and

accurately derive the equations used in numerical integration. Such a wonderful

tool allowed me to rederive equations and perform corrections, quickly and

painlessly, when needed. The MATLAB symbolic computation empowered me to

pursue the new algorithms in greater variety. See Appendix A for sample

MATLAB scripts that I used.

Hybrid Newton-Cotes Integrals 2

Copyright © 2017 by Namir Clement Shammas Version 1.1

 In this paper, I present pseudo-code for various integration algorithms. I

focus on applying these algorithms to each (i.e. inside) integration step

size h, and not across the integration interval (α, β) where you make a

single function evaluation per integration step. I assume that α – β is an

integer multiple of the integration step size h. As such, the pseudo-code

is ready for implementing the chained versions of the various

algorithms.

Translating the pseudo-code into working subroutine functions (in your

preferred programming language) will cause the executing code to

perform more evaluations of the integrated functions, at the benefit of

more accurate answers than traditional integration schemes that make a

single function evaluations per integration step—which you can also

implement. In the day and age of fast CPU, the additional CPU effort

should not be a burden. Of course you can always adapt the algorithms

to make single function evaluation per integration step.

The Three-Point Hybrid Newton-Cotes Integral
This section presents two three-points hybrid Newton-Cotes integration methods.

Let me first reintroduce Milne’s method which is the comparable Open Newton-

Cotes integration method:

Given f(x), the integration interval (A, B) and the increment h.

X = A

Sum = 0

Do

 X1 = X + 0.25 * h

 X2 = X + 0.5 * h

 X3 = X + 0.75 * h

 Sum = Sum + 2 * f(X1) - f(X2) + 2 * f(X3)

 X = X + h

Loop Until X > B

Integral = Sum * h / 3

The above method samples at (h/4, y1), (h/2, y2), and (3h/4, y3) within a given

integration step h. Throughout this study, I use the approach where I apply the

algorithm for each integration step h.

The left-anchor three-points hybrid Newton-Cotes integration method uses the

following equation:

Hybrid Newton-Cotes Integrals 3

Copyright © 2017 by Namir Clement Shammas Version 1.1

Integral = (Y1 + 3*Y3)*h/4

For an integral that samples at (0, y1), (h/3, y2), and (2h/3, y3) within a given

integration step h. This new algorithm calculates function values starting at α and

moving upward close to, but never reaching, β, where f(β) is undefined. The

pseudo-code for this algorithm is:

Given f(x), the integration interval (A, B) and the increment h.

X = A

Sum = 0

Do

 X1 = X + 0.25 * h

 X2 = X + 0.5 * h

 X3 = X + 0.75 * h

 Sum = Sum + f(X1) + 3 * f(X3)

 X = X + h

Loop Until X > B

Integral = Sum * h / 4

Here is another version of the left-anchor (let’s call it extended left-anchor) method

that samples at (0, y1), (9h/20, y2), and (9h/10, y3). The equation is:

Integral = (38 * Y1 + 140 * Y2 + 65 * Y3)*h/243

The pseudo-code for this algorithm is:

Given f(x), the integration interval (A, B) and the increment h.

X = A

Sum = 0

Do

 X1 = X

 X2 = X + 9 * h / 20

 X3 = X + 9 * h / 10

 Sum = Sum + 38 * f(X1) + 140 * f(X2) + 65 * f(X3)

 X = X + h

Loop Until X > B

Integral = Sum * h / 243

The right-anchor three-points hybrid Newton-Cotes integration method uses the

following equation:

Integral = (3*y1 + y3)*h/4

For an integral that samples at (h/3, y1), (2h/3, y2), and (h, y3) within a given

integration step h. This version calculates values starting just above the lower

integration interval, α, and includes the value at the upper interval end, β. This

Hybrid Newton-Cotes Integrals 4

Copyright © 2017 by Namir Clement Shammas Version 1.1

method works for integrals where f(α) is undefined. The pseudo-code for this

algorithm is:

Given f(x), the integration interval (A, B) and the increment h.

X = A

Sum = 0

Do

 X1 = X + h/3

 X2 = X + 2 * h/3

 X3 = X + h

 Sum = Sum + 3 * f(X1) + f(X3)

 X = X + h

Loop Until X > B

Integral = Sum * h / 4

An extended right-anchor method samples the points (h/10, y1), (11h/20, y2), and

(h, y3). The equation used is:

Integral = (65 * Y1 + 140 * Y2 + 38 * Y3)*h/243

The pseudo-code for this algorithm is:

Given f(x), the integration interval (A, B) and the increment h.

X = A

Sum = 0

Do

 X1 = X

 X2 = X + 9 * h / 20

 X3 = X + 9 * h / 10

 Sum = Sum + 65 * f(X1) + 140 * f(X2) + 38 * f(X3)

 X = X + h

Loop Until X > B

Integral = Sum * h / 243

So how do the left-anchor and right-anchor methods perform compared to each

other and compared to Milne’s method? Table 1 shows a summary of results for a

sample of test functions. The table entries are the differences in absolute percent

errors between any two algorithms. The errors are calculated for different integral

intervals and also for different integration steps. The first seven functions were

defined for all the points at the end of the integration interval. The function ln(x)

(the function before last) is not defined at the start of the integration interval, x=0.

The function ln(10-x) (the last function) is not defined at the end of the integration

interval, x=10.

Hybrid Newton-Cotes Integrals 5

Copyright © 2017 by Namir Clement Shammas Version 1.1

f(x) Diff ABS %

Err of

Milne’s

method -

Left-Anchor

Diff ABS % Err

of Milne’s method

- Right-Anchor

Diff ABS % Err

of Left-Anchor -

Right-Anchor

1/x -0.00015 4.43756E-07 0.000147913

ln(x)/x -0.00022 -0.000427003 -0.00020681

1/(1+x^4) 4.55E-05 -4.69589E-05 -9.2498E-05

1/(1+exp(x)) -0.11928 0.009789866 0.129068906

x * sin(30 * x) * cos(x) -9.8E-06 -9.40563E-06 4.32939E-07

1/x^4 0.068319 -0.00501006 -0.07332909

x/ln(x) -2.7E-05 -9.1289E-06 1.78373E-05

ln(x) -0.014986359

ln(10-x) -0.008715121

Table 1. Comparing three-point integral methods.

Looking at the values in Table 1, I can say that the three methods give practically

(or statistically speaking, if you prefer) comparable results. In the case of the last

two functions, the absolute differences in percent error are a bit higher, because we

are dealing with functions with one end of the integration interval is undefined.

What about the extended left-anchor and extended right-anchor compared with the

Milne method? Table 2 shows the same type of results as in Table 1.

f(x) Diff ABS %

Err of

Milne’s

method -

Left-Anchor

Diff ABS % Err

of Milne’s method

- Right-Anchor

Diff ABS % Err

of Left-Anchor -

Right-Anchor

1/x -1.47825E-05 1.67735E-07 1.49503E-05

ln(x)/x -1.3008E-05 -2.30907E-05 -1.0083E-05

1/(1+x^4) 3.49789E-06 -4.90769E-06 -8.4056E-06

1/(1+exp(x)) 9.08736E-07 -4.22528E-07 -1.3313E-06

x * sin(30 * x) * cos(x) -8.7485E-07 -8.36932E-07 3.79225E-08

1/x^4 0.0404723 0.004779989 -0.03569235

x/ln(x) -2.5354E-06 -5.24364E-07 2.01099E-06

ln(x) 0.017635792

ln(10-x) 0.010255871

Table 2. Comparing three-point extended integral methods.

Hybrid Newton-Cotes Integrals 6

Copyright © 2017 by Namir Clement Shammas Version 1.1

The values, for the first seven test functions, in Table 2 are smaller than their

counterparts in Table 1. This difference is due to the fact that the extended left-

anchor and extended right-anchor methods sample more of the integration step h.

As such these extended algorithms are better than the regular left and right anchor

methods that I presented earlier.

The Four-Point Hybrid Newton-Cotes Integral
This section presents two four-points hybrid Newton-Cotes integration methods.

Let me first introduce an unnamed method (according to Wikipedia) which is the

comparable Open Newton-Cotes integration method:

Given f(x), the integration interval (A, B) and the increment h.

X = A

Sum = 0

Do

 X1 = X + 0.2 * h

 X2 = X + 0.4 * h

 X3 = X + 0.6 * h

 X4 = X + 0.8 * h

 Sum = Sum + 11 * f(X1) + f(X2) + f(X3) + 11 * f(X4)

 X = X + h

Loop Until X > B

Integral = Sum * h / 24

The above method samples at (2h/10, y1), (4h/10,y2), (6h/10, y3), and (8h/10, y4)

within a given step.

The left-anchor four-points hybrid Newton-Cotes integration method uses the

following equation:

Integral = (17 * y1 + 60 * y2 + 45 * y3 + 40 * y4)*h/162

For an integral that samples at (0, y1), (3h/10, y2), (6h/10, y3), and (9h/10, y4)

within a given step. This version calculates function values starting at α and

moving upward close to, but never reaching, β. The pseudo-code for this algorithm

is:

Given f(x), the integration interval (A, B) and the increment h.

X = A

Sum = 0

Do

 X1 = X

 X2 = X + 3 * h / 10

 X3 = X + 6 * h / 10

Hybrid Newton-Cotes Integrals 7

Copyright © 2017 by Namir Clement Shammas Version 1.1

 X4 = X + 9 * h / 10

 Sum = Sum + 17 * f(X1) + 60 * f(X2) + 45 * f(X3) +

 40 * f(X4)

 X = X + h

Loop Until X > B

Integral = Sum * h / 162

The right-anchor four-points hybrid Newton-Cotes integration method uses the

following equation:

Integral = (40 * y1 + 45 * y2 + 60 * y3 + 17 * y4)*h/162

For an integral that samples at (h/10, y1), (4h/10, y2), (7h/10, y3), and (h, y4)

within a given step. This version calculates values starting just higher than the

lower integration interval, α, and includes the value at the upper interval end, β.

The pseudo-code for this algorithm is:

Given f(x), the integration interval (A, B) and the increment h.

X = A

Sum = 0

Do

 X1 = X + h / 10

 X2 = X + 4 * h / 10

 X3 = X + 7 * h / 10

 X4 = X + h

 Sum = Sum + 40 * f(X1) + 45 * f(X2) + 60 * f(X3) +

 17 * f(X4)

 X = X + h

Loop Until X > B

Integral = Sum * h / 162

Again, we ask how do the four-point left-anchor and right-anchor methods perform

compared to each other and compared to the unnamed method? Table 3 shows a

summary of results for a sample of test functions. The table entries are the

differences in absolute percent errors between any two algorithms. The errors are

calculated for different integral intervals and also for different integration steps.

Hybrid Newton-Cotes Integrals 8

Copyright © 2017 by Namir Clement Shammas Version 1.1

f(x) Diff ABS %

Err of

Milne’s

method -

Left-Anchor

Diff ABS % Err

of Milne’s method

- Right-Anchor

Diff ABS % Err

of Left-Anchor -

Right-Anchor

1/x -3.73308E-07 -3.15975E-07 5.7333E-08

ln(x)/x 6.70469E-06 6.83118E-06 1.26483E-07

1/(1+x^4) -3.4935E-07 -3.9745E-07 -4.81005E-08

1/(1+exp(x)) 1.29374E-07 1.29645E-07 2.71092E-10

x * sin(30 * x) * cos(x) 6.09862E-09 6.09568E-09 -2.93771E-12

1/x^4 0.00373444 0.00073932 -0.0029951

x/ln(x) 6.38385E-08 7.47017E-08 1.08631E-08

ln(x) 0.013072584

ln(10-x) 0.007602195

Table 3. Comparing four-point integral methods.

The results of Table 3 pretty much agree with those in Tables 1 and 2. The three

methods give practically comparable results.

Enhancing Open Newton Cotes Methods
This bonus section presents enhanced open Newton-Cotes method that I used

earlier in this paper to compare with the new hybrid Newton-Cotes methods.

Enhancing the Milne Method

I used Milne’s method earlier in this article and compared it with various hybrid

Newton-Cotes methods. Milne’s method samples at (h/4, y1), (h/2, y2) and (3h/4,

y3) in the integration step h. In this bonus section I present a Modified Milne

method that samples at (h/10, y1), (h/2, y2), (9h/10, y3) in the integration step h.

The modified method covers a wider interval in the integration step h, than the

original method. The equation for the Modified Milne method is:

Integral = (25*y1 + 46*y2 + 25*y3)*h/96

The pseudo-code for the Modified Milne method is:

Given f(x), the integration interval (A, B) and the increment h.

X = A

Sum = 0

Do

 X1 = X + h / 10

 X2 = X + 4 * h / 10

 X3 = X + 7 * h / 10

Hybrid Newton-Cotes Integrals 9

Copyright © 2017 by Namir Clement Shammas Version 1.1

 Sum = Sum + 25 * f(X1) + 456 * f(X2) + 25 * f(X3) +

 X = X + h

Loop Until X > B

Integral = Sum * h / 96

I tested the Modified Milne method with the regular one using the seven test

functions listed in the tables of this paper. In 7 out of 9 cases, the Modified Milne

method performed better than the original method. So, if you are going to stick

with the Milne method, I comfortably recommend the Modified Milne method that

uses three points.

Before we wrap things up in this section, let’s take the Milne method to an

extreme. This new scheme samples at (h/100, y1), (h/2, y2), (99h/100, y3) in the

integration step h. The equation for the Modified Milne method is:

Integral = (1250*y1 + 4703*y2 + 1250*y3)*h/7203

The pseudo-code for the Extreme Modified Milne method is:

Given f(x), the integration interval (A, B) and the increment h.

X = A

Sum = 0

Do

 X1 = X + h / 100

 X2 = X + h / 2

 X3 = X + 99 * h / 100

 Sum = Sum + 1250 * f(X1) + 4703 * f(X2) + 1250 * f(X3)

 X = X + h

Loop Until X > B

Integral = Sum * h / 4703

I tested the Extreme Milne method with the regular one using the seven test

functions listed in the tables of this paper. In 6 out of 9 cases, the Extreme Milne

method performed better than the original method. Thus, I also recommend the

Extreme Milne method that uses three points.

What about the difference between the Modified Milne method and the Extreme

Milne method? The test involving the seven functions shows, surprisingly, mixed

results with no clear winner between the two methods. It seems both methods

cover a wide enough part of the integration step h.

Enhancing the Four-Point Unnamed Method

In this section I introduced an enhanced version of the four-point unnamed (open

Newton-Cotes) integration method. I will call this one the four-point Shammas

method since it is based on an unnamed method. The basic scheme for the

Hybrid Newton-Cotes Integrals 10

Copyright © 2017 by Namir Clement Shammas Version 1.1

Shammas method samples function values at (h/10, y1), (34h/100, y2), (67h/100,

y3), and (9h/10, y4). The equation for this method is:

Integral = [(4033 * Y1) / 17496 + (32200 * Y2) / 115911 +

 (575 * Y3) / 2187 + (97 * Y4) / 424]*h

The pseudo-code for this algorithm is:

Given f(x), the integration interval (A, B) and the increment h.

X = A

Sum = 0

Do

 X1 = X + h / 10

 X2 = X + 37 * h / 100

 X3 = X + 64 * h / 100

 X4 = X + 9 * h / 10

 Y1 = f(X1)

 Y2 = f(X2)

 Y3 = f(X3)

 Y4 = f(X4)

 Sum = Sum + (4033 * Y1) / 17496 + (32200 * Y2) / 115911 +

 (575 * Y3) / 2187 + (97 * Y4) / 424

 X = X + h

Loop Until X > B

Integral = Sum * h

As expected, the Shammas method performs better than (in 6 out of 7 test function

cases) the unnamed method because it samples from a wider interval in the

integration step h.

Conclusion
This short paper introduces you to a whole new category of numerical integration

comparable to the open Newton-Cotes integration methods. The paper offers you

six hybrid Newton-Cotes integration methods that you can add to your repertoire

of open integration methods that deal with integrals where either the lower or the

upper integral values cannot be calculated for the integrated function.

To choose between open Newton-Cotes methods and their hybrid counterpart, I

suggest the following calibration. Test your target functions with sample

parameters and known integrals using both types of integration methods. After

comparing the results, select the type of Newton-Cotes method that generated less

error in your calibration test. Apply that method for problems that you are working

with.

Hybrid Newton-Cotes Integrals 11

Copyright © 2017 by Namir Clement Shammas Version 1.1

You can use the same approach that I presented to derive hybrid Newton-Cotes

integration methods that use five or more points in the integration schemes. You

can also create your own versions of the three-point and four-point methods by

tweaking the sampling points within the integration step h. The best scheme is to

have equidistant sampling points that either start at (x=0) or end at (x=h) the

integration interval.

Deriving hybrid (and even open) Newton-Cotes methods that cover as wide as

possible integration steps yield more accurate methods. This enhancement is true,

because the hybrid and open Newton-Cotes methods approach the same interval of

values incorporated in closed Newton-Cotes methods. Stated as a general limit we

can say:

lim
 𝛾→1

𝑂𝑝𝑒𝑛 𝑁𝐶 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝛼, 𝛽, 𝛾ℎ) = 𝐶𝑙𝑜𝑠𝑒𝑑 𝑁𝐶 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝛼, 𝛽, ℎ)

lim
 𝛾→1

𝐻𝑦𝑏𝑟𝑖𝑑 𝑁𝐶 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝛼, 𝛽, 𝛾ℎ) = 𝐶𝑙𝑜𝑠𝑒𝑑 𝑁𝐶 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝛼, 𝛽, ℎ)

The first two parameters, 𝛼 𝑎𝑛𝑑 𝛽, define the integration interval. Parameter h is

the integration step size. Parameter 𝛾 is the fraction of the step size h covered by

the interpolation polynomials used to calculate the equation for numerical

integration.

The paper also introduced you to two variants of the Milne methods and a variant

of the unnamed method. These variants generally perform better than the original

versions since their interpolative polynomials cover a wider range of the

integration steps.

Appendix A
This appendix shows sample MATLAB scripts that I used to generate the formulas

for numerical integration. The first script is for the left-anchored hybrid Newton-

Cotes method:

syms a b c d h y1 y2 y3 y4

% (0,y1), (3h/`0,y2), (6h/10, y3), (9/10h, y4)

eqn1 = d == y1

eqn2 = a*((3*h/10)^3) + b*((3*h/10)^2) + c*(3*h/10) + d == y2

eqn3 = a*((6*h/10)^3) + b*((6*h/10)^2) + c*(6*h/10) + d == y3

eqn4 = a*((9*h/10)^3) + b*((9*h/10)^2) + c*(9*h/10)+ d == y4

[A,B] = equationsToMatrix([eqn1, eqn2, eqn3, eqn4], [a, b, c,

d])

X=linsolve(A,B)

Hybrid Newton-Cotes Integrals 12

Copyright © 2017 by Namir Clement Shammas Version 1.1

fprintf('Leaving out h factor out we get\n')

Area = 1/4*X(1)*h^3 + 1/3*X(2)*h^2 +1/2*X(3)*h + X(4)

% Output is

%

% Leaving out h factor out we get

%

% Area =

%

% (17*y1)/162 + (10*y2)/27 + (5*y3)/18 + (20*y4)/81

The next MATLAB script is for the right-anchored hybrid Newton-Cotes method:

syms a b c d h y1 y2 y3 y4

% (h/10,y1), (4h/10, y2), (7/10h, y3), (h, y4)

eqn1 = a*((h/10)^3) + b*((h/10)^2) + c*(h/10) + d == y1

eqn2 = a*((4*h/10)^3) + b*((4*h/10)^2) + c*(4*h/10) + d == y2

eqn3 = a*((7*h/10)^3) + b*((7*h/10)^2) + c*(7*h/10)+ d == y3

eqn4 = a*h^3 + b*h^2 + c*h + d == y4

[A,B] = equationsToMatrix([eqn1, eqn2, eqn3, eqn4], [a, b, c,

d])

X=linsolve(A,B)

fprintf('Leaving out h factor out we get\n')

Area = 1/4*X(1)*h^3 + 1/3*X(2)*h^2 +1/2*X(3)*h + X(4)

% output is

%

% Leaving out h factor out we get

%

% Area =

%

% (20*y1)/81 + (5*y2)/18 + (10*y3)/27 + (17*y4)/162

