
The Quartile Algorithm for Root Bracketing

 Copyright © 2010 Namir Shammas Page 1

The Quartile Algorithm for Root Bracketing

by

Namir Shammas

Introduction

Calculating the roots for functions and polynomials has gained the attention of mathematicians

for many centuries. Students of numerical analysis come across a rich harvest of algorithms

ranging from the simple to the complex. One class of root-seeking algorithms is called the root-

bracketing algorithms in which the solution requires that you start with an interval that

contains the root. The targeted function when evaluated at the ends of the interval give values

that have opposite signs. The Bisection method is the simplest and least efficient root-

bracketing algorithm.

This paper introduces a brand new root-bracketing algorithm designed by the author. The new

Quartile algorithm is more efficient than the Bisection method. While the Bisection compares

the signs of the function's values, the new algorithm compares the absolute function's value.

This strategy allows it to narrow the root-bracketing interval faster than the Bisection.

I first presented this algorithm at the HHC2005 (Hand Held Conference) conference which took

place in Chicago in the year 2005.

Algorithm

First, let me present the algorithm for the Bisection method since I am billing the Quartile

algorithm as better than the Bisection.

To solve f(X) = 0 given interval [A, B] such that f(A) * f(B) <= 0 and the Tolerance = maximum

interval width that is acceptable for the solution:

1. Fa = F(A) and Fb = F(B)

2. Calculate M = (A + B) / 2

3. Fm = F(M)

4. If fm * fa > 0

a. Then A = M and Fa = Fm

b. Else B = M and Fb = Fm

5. If |A - B| > Tolerance Then go to step 2

6. Return root as M or (A + B) /2

The Quartile Algorithm for Root Bracketing

 Copyright © 2010 Namir Shammas Page 2

The algorithm for the Quartile method is:

To solve f(X) = 0 given interval [A, B] such that f(A) * f(B) <= 0, a coefficient α (in the range of

0.25 to 0.3), and the Tolerance = maximum interval width that is acceptable for the solution:

1. Fa = F(A) and Fb = F(B)

2. If |Fb| > |Fa|

a. Then M = A + α * (B – A)

b. Else M = B + α * (A – B)

3. Fm = F(M)

4. If fm * fa > 0

a. Then A = M and Fa = Fm

b. Else B = M and Fb = Fm

5. If |A - B| > Tolerance Then go to step 2

6. Return root as M or (A + B) /2

The coefficient α tells the algorithm how close M is calculated to either A or B based on

comparing the absolute values of f(A) and f(B). When you set α to 0.5, the Quartile method

becomes the Bisection method. Thus you can say that the Bisection method is a special case of

the Quartile algorithm.

Comparison with Bisection

To compare the Quartile and Bisection methods, consider the following function:

f(X) = exp(X) - 3 * X
2

The function has roots near -0.45, 0.91, and 3.73. The following table compares the number of

function calls needed to reach a solution using a tolerance of 1e-7.

Initial A Initial B Bisection fx calls Quartile fx calls

3 4 26 20

2 4 27 19

0 1 26 20

0 2 27 22

The Quartile Algorithm for Root Bracketing

 Copyright © 2010 Namir Shammas Page 3

Initial A Initial B Bisection fx calls Quartile fx calls

-1 0 26 21

-2 0 27 20

The table shows that in each case, the Quartile algorithms required fewer function calls than

the Bisection to reach the refined estimate for the root.

The Test Excel Spreadsheet and VBA Code

The following Excel spreadsheet was used to obtain the above results:

The Quartile Algorithm for Root Bracketing

 Copyright © 2010 Namir Shammas Page 4

The Quartile Algorithm for Root Bracketing

 Copyright © 2010 Namir Shammas Page 5

The data in column A must be entered in order to prepare for the test. The output (including

the headings) appears in columns B and FxCallCounter.

The following VBA code was used for the comparative test:

Option Explicit

Function F(ByVal X As Double) As Double

 F = Exp(X) - 3 * X ^ 2

End Function

Sub CalcRoot()

 Dim A As Double, B As Double, M As Double

 Dim Fa As Double, Fb As Double, Fm As Double

 Dim Alpha As Double, Toler As Double

 Dim R As Integer, FxCallCounter As Integer

 A = Cells(2, 1)

 B = Cells(4, 1)

 Toler = Cells(6, 1)

 Alpha = Cells(8, 1)

 Range("B:C").Clear

 Range("B1").Value = "Bisection"

 ' Bisection method

 Fa = F(A)

 Fb = F(B)

 FxCallCounter = 2

 R = 2

 Do

 M = (A + B) / 2

 Fm = F(M)

 FxCallCounter = FxCallCounter + 1

 If Fm * Fa > 0 Then

 A = M

The Quartile Algorithm for Root Bracketing

 Copyright © 2010 Namir Shammas Page 6

 Fa = Fm

 Else

 B = M

 Fb = Fm

 End If

 Range("B" & R).Value = M

 R = R + 1

 Loop Until Abs(A - B) <= Toler

 Range("B" & R).Value = (A + B) / 2

 Range("B" & CStr(R + 1)).Value = "Fx calls = " &

FxCallCounter

 A = Cells(2, 1)

 B = Cells(4, 1)

 Range("C1").Value = "Quartile"

 ' Quartile method

 Fa = F(A)

 Fb = F(B)

 FxCallCounter = 2

 R = 2

 Do

 If Abs(Fb) > Abs(Fa) Then

 M = A + Alpha * (B - A)

 Else

 M = B + Alpha * (A - B)

 End If

 Fm = F(M)

 FxCallCounter = FxCallCounter + 1

 If Fm * Fa > 0 Then

 A = M

 Fa = Fm

 Else

 B = M

 Fb = Fm

 End If

The Quartile Algorithm for Root Bracketing

 Copyright © 2010 Namir Shammas Page 7

 Range("C" & R).Value = M

 R = R + 1

 Loop Until Abs(A - B) <= Toler

 Range("C" & R).Value = (A + B) / 2

 Range("C" & CStr(R + 1)).Value = "Fx calls = " &

FxCallCounter

End Sub

