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Introduction 

Calculating the roots for functions and polynomials has gained the attention of mathematicians 

for many centuries. Students of numerical analysis come across a rich harvest of algorithms 

ranging from the simple to the complex. One class of root-seeking algorithms is called the root-

bracketing algorithms in which the solution requires that you start with an interval that 

contains the root. The targeted function when evaluated at the ends of the interval give values 

that have opposite signs. The Bisection method is the simplest and least efficient root-

bracketing algorithm. 

This paper introduces a brand new root-bracketing algorithm designed by the author. The new 

Quartile algorithm is more efficient than the Bisection method. While the Bisection compares 

the signs of the function's values, the new algorithm compares the absolute function's value. 

This strategy allows it to narrow the root-bracketing interval faster than the Bisection. 

I first presented this algorithm at the HHC2005 (Hand Held Conference) conference which took 

place in Chicago in the year 2005.  

Algorithm 

First, let me present the algorithm for the Bisection method since I am billing  the Quartile 

algorithm as better than the Bisection. 

To solve f(X) = 0 given interval [A, B] such that f(A) * f(B) <= 0 and the Tolerance = maximum 

interval width that is acceptable for the solution: 

1. Fa = F(A) and Fb = F(B) 

2. Calculate M = (A + B) / 2 

3. Fm = F(M) 

4. If fm * fa > 0 

a. Then A = M and Fa = Fm 

b. Else B = M and Fb = Fm 

5. If |A - B| > Tolerance Then go to step 2 

6. Return root as M or (A + B) /2 
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The algorithm for the Quartile method is: 

To solve f(X) = 0 given interval [A, B] such that f(A) * f(B) <= 0, a coefficient α (in the range of 

0.25 to 0.3), and the Tolerance = maximum interval width that is acceptable for the solution: 

1. Fa = F(A) and Fb = F(B) 

2. If |Fb| > |Fa|  

a. Then M = A + α * (B – A) 

b. Else M = B +  α * (A – B) 

3. Fm = F(M) 

4. If fm * fa > 0 

a. Then A = M and Fa = Fm 

b. Else B = M and Fb = Fm 

5. If |A - B| > Tolerance Then go to step 2 

6. Return root as M or (A + B) /2 

The coefficient α tells the algorithm how close M is calculated to either A or B based on 

comparing the absolute values of f(A) and f(B). When you set α to 0.5, the Quartile method 

becomes the Bisection method. Thus you can say that the Bisection method is a special case of 

the Quartile algorithm. 

Comparison with Bisection 

To compare the Quartile and Bisection methods, consider the following function: 

f(X) = exp(X) - 3 * X
2
  

The function has roots near -0.45, 0.91, and 3.73. The following table compares the number of 

function calls needed to reach a solution using a tolerance of 1e-7. 

Initial A Initial B Bisection fx calls Quartile fx calls 

3 4 26 20 

2 4 27 19 

0 1 26 20 

0 2 27 22 
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Initial A Initial B Bisection fx calls Quartile fx calls 

-1 0 26 21 

-2 0 27 20 

 

The table shows that in each case, the Quartile algorithms required fewer function calls than 

the Bisection to reach the refined estimate for the root. 

The Test Excel Spreadsheet and VBA Code 

The following Excel spreadsheet was used to obtain the above results: 
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The data in column A must be entered in order to prepare for the test. The output (including 

the headings) appears in columns B and FxCallCounter. 

The following VBA code was used for the comparative test: 

Option Explicit 

 

Function F(ByVal X As Double) As Double 

  F = Exp(X) - 3 * X ^ 2 

End Function 

 

Sub CalcRoot() 

  Dim A As Double, B As Double, M As Double 

  Dim Fa As Double, Fb As Double, Fm As Double 

  Dim Alpha As Double, Toler As Double 

  Dim R As Integer, FxCallCounter As Integer 

   

  A = Cells(2, 1) 

  B = Cells(4, 1) 

  Toler = Cells(6, 1) 

  Alpha = Cells(8, 1) 

  Range("B:C").Clear 

  Range("B1").Value = "Bisection" 

 

   

  ' Bisection method 

  Fa = F(A) 

  Fb = F(B) 

  FxCallCounter = 2 

  R = 2 

  Do 

    M = (A + B) / 2 

    Fm = F(M) 

    FxCallCounter = FxCallCounter + 1 

    If Fm * Fa > 0 Then 

      A = M 
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      Fa = Fm 

    Else 

      B = M 

      Fb = Fm 

    End If 

    Range("B" & R).Value = M 

    R = R + 1 

  Loop Until Abs(A - B) <= Toler 

  Range("B" & R).Value = (A + B) / 2 

  Range("B" & CStr(R + 1)).Value = "Fx calls = " & 

FxCallCounter 

   

  A = Cells(2, 1) 

  B = Cells(4, 1) 

  Range("C1").Value = "Quartile" 

  ' Quartile method 

  Fa = F(A) 

  Fb = F(B) 

  FxCallCounter = 2 

  R = 2 

  Do 

    If Abs(Fb) > Abs(Fa) Then 

      M = A + Alpha * (B - A) 

    Else 

      M = B + Alpha * (A - B) 

    End If 

    Fm = F(M) 

    FxCallCounter = FxCallCounter + 1 

    If Fm * Fa > 0 Then 

      A = M 

      Fa = Fm 

    Else 

      B = M 

      Fb = Fm 

    End If 
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    Range("C" & R).Value = M 

    R = R + 1 

  Loop Until Abs(A - B) <= Toler 

  Range("C" & R).Value = (A + B) / 2 

  Range("C" & CStr(R + 1)).Value = "Fx calls = " & 

FxCallCounter 

   

End Sub 


