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Introduction

Calculating the roots for functions and polynomials has gained the attention of mathematicians
for many centuries. Students of numerical analysis come across a rich harvest of algorithms
ranging from the simple to the complex. One class of root-seeking algorithms is called the root-
bracketing algorithms in which the solution requires that you start with an interval that
contains the root. The targeted function when evaluated at the ends of the interval give values
that have opposite signs. The Bisection method is the simplest and least efficient root-
bracketing algorithm.

This paper introduces a brand new root-bracketing algorithm designed by the author. The new
Quartile algorithm is more efficient than the Bisection method. While the Bisection compares
the signs of the function's values, the new algorithm compares the absolute function's value.
This strategy allows it to narrow the root-bracketing interval faster than the Bisection.

| first presented this algorithm at the HHC2005 (Hand Held Conference) conference which took
place in Chicago in the year 2005.

Algorithm
First, let me present the algorithm for the Bisection method since | am billing the Quartile
algorithm as better than the Bisection.

To solve f(X) = 0 given interval [A, B] such that f(A) * f(B) <= 0 and the Tolerance = maximum
interval width that is acceptable for the solution:

1. Fa=F(A)and Fb = F(B)
2. CalculateM=(A+B)/2
3. Fm=F(M)

4. Iffm*fa>0

a. ThenA=Mand Fa=Fm

b. Else B=Mand Fb=Fm
5. If |A-B| >Tolerance Then go to step 2
6. Returnrootas M or (A +B)/2
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The algorithm for the Quartile method is:

To solve f(X) = 0 given interval [A, B] such that f(A) * f(B) <= 0, a coefficient a (in the range of
0.25 to 0.3), and the Tolerance = maximum interval width that is acceptable for the solution:

1. Fa=F(A)and Fb=F(B)
If |[Fb| > |Fa]
a. ThenM=A+a*(B—A)
b. ElseM=B+ a* (A-B)
3. Fm=F(M)
Iffm*fa>0
a. ThenA=MandFa=Fm
b. Else B=M and Fb =Fm
5. If |A-B| >Tolerance Then go to step 2
6. Returnrootas M or (A+B)/2

The coefficient a tells the algorithm how close M is calculated to either A or B based on
comparing the absolute values of f(A) and f(B). When you set a to 0.5, the Quartile method
becomes the Bisection method. Thus you can say that the Bisection method is a special case of
the Quartile algorithm.

Comparison with Bisection
To compare the Quartile and Bisection methods, consider the following function:

f(X) = exp(X) - 3 * X2

The function has roots near -0.45, 0.91, and 3.73. The following table compares the number of
function calls needed to reach a solution using a tolerance of 1le-7.

Initial A Initial B Bisection fx calls Quartile fx calls
3 4 26 20
2 4 27 19
0 1 26 20
0 2 27 22
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Initial A Initial B Bisection fx calls Quartile fx calls
-1 0 26 21
-2 0 27 20

The table shows that in each case, the Quartile algorithms required fewer function calls than

the Bisection to reach the refined estimate for the root.

The Test Excel Spreadsheet and VBA Code

The following Excel spreadsheet was used to obtain the above results:
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A B L
1 A Bisection Quartile
2 -2 -1 -0.5
3 |B -0.5 -0.375
4 0 -0.25 -0.46875
5 Tolerance -0.375 -0.4453125
6 | 1.00E-07 -0.4375 -0.462890625
7 Alpha -0.46875 -0.458496094
8 .25 -0.453125 -0.459594727
5 -0.4609375 -0.458770752
10 -0.45703125 -0.458976746
11 -0.458984375 -0.458925247
12 -0.458007813 -0.458963871
13 -0.458496094 -0.458954215
14 -0.458740234 -0.458961457
15 -0.458862305 -0.458962061
16 -0.45892334 -0.458962513
17 -0.458953857 -0.458962174
18 -0.458969116 -0.458962259
15 -0.458961487 -0.458962322
20 -0.458965302 -0.45896229
21 -0.458963394 Fxcalls =20
22 -0.45896244
23 -0.458961964
24 -0.458962202
25 -0.458962321
26 -0.458962262
27 -0.458962291

28 Fxcalls =27

M 4 F M| Sheetl . Sheet2 Sheet3 (]
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The data in column A must be entered in order to prepare for the test. The output (including

the headings) appears in columns B and FxCallCounter.
The following VBA code was used for the comparative test:

Option Explicit

Function F (ByVal X As Double) As Double
F = Exp(X) - 3 * X ~ 2
End Function

Sub CalcRoot ()
Dim A As Double, B As Double, M As Double
Dim Fa As Double, Fb As Double, Fm As Double
Dim Alpha As Double, Toler As Double
Dim R As Integer, FxCallCounter As Integer

A = Cells (2, 1)

B = Cells (4, 1)

Toler Cells (6, 1)

Alpha = Cells (8, 1)

Range ("B:C") .Clear

Range ("Bl") .Value = "Bisection"

' Bisection method

Fa = F(A4)
Fb = F(B)
FxCallCounter = 2
R =2
Do
M= (A+B) /2
Fm = F (M)

FxCallCounter = FxCallCounter + 1
If Fm * Fa > 0 Then
A =M
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Fa = Fm
Else
B =M
Fb = Fm
End If
Range ("B" & R) .Value = M
R=R+1

Loop Until Abs (A - B) <= Toler

Range ("B" & R).Value = (A + B) / 2

Range ("B" & CStr(R + 1)) .Value = "Fx calls = " &
FxCallCounter

A = Cells (2, 1)
B = Cells (4, 1)

Range ("C1") .Value = "Quartile"
' Quartile method

Fa = F ()

Fb = F(B)

FxCallCounter = 2

R =2

Do

If Abs (Fb) > Abs (Fa) Then
M = A + Alpha * (B - A)

Else

M =B + Alpha * (A - B)
End If
Fm = F (M)

FxCallCounter = FxCallCounter + 1
If Fm * Fa > 0 Then

End If
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Range ("C" & R) .Value = M
R=R+1
Loop Until Abs (A - B) <= Toler
Range ("C" & R).Value = (A + B) / 2

Range ("C" & CStr(R + 1)) .Value = "Fx calls = " &
FxCallCounter
End Sub
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