
 Page 1 of 13

Copyright © 2017 by Namir Clement Shammas

The Super & Hyper Secant Root-Seeking
Algorithm

By

Namir Shammas

Introduction
Ostrowski was a Russian mathematician who taught for many years at the University

of Basil, Switzerland. He proposed an enhancement to Newton’s root seeking

algorithm. Ostrowski suggested a new twist such that each iteration offers two

refinements for the root—one of them being intermediate. The Ostrowski algorithm

matches Halley’s root-seeking algorithm in its third order rate of convergence.

Recently, the Ostrowski algorithm inspired many mathematicians to device root-

seeking algorithms with two or more refinements to the root per iteration.

I recently applied Ostrowski’s approach to Halley’s method and was able to produce

a good working algorithm. I decided to further experiment with applying

Ostrowski’s basic approach to the secant method, which itself is a rough and good

approximation of Newton’s method. I was able to generate two algorithms—the

Super Secant and the Hyper Secant methods.

Legacy Root-Seeking Algorithms
In this section, we briefly discuss the root-seeking methods of Newton, Halley, and

Ostrowski. If you are already familiar with these algorithms you can skip to the

section that describes the new algorithms.

The Newton Method

One of the most popular root-seeking algorithms is the Newton method (also called

the Newton-Raphson method). While Isaac Newton had little to do with the

algorithm in its current form, it was Thomas Simpson (better known for Simpson’s

rule for numerical integration) who gave it its name and homage to Sir Isaac Newton.

The equation for Newton’s method that refined a guess for the root is:

𝑥𝑖+1 = 𝑥𝑖 –
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 (1)

 Page 2 of 13

Copyright © 2017 by Namir Clement Shammas

Equation 1 requires evaluating the function f(x) and it’s derivative f’(x) which can

be approximated using the forward difference approximation:

𝑓’(𝑥) ⋍ (𝑓(𝑥 + ℎ) – 𝑓(𝑥))/ℎ (2)

Where h = 0.02(1 + |x|). Newton’s method usually converges at a second order rate.

The Halley Method

Halley devised a method for calculating roots that has a third order convergence rate.

The root-refining equation for this algorithm is:

𝑥𝑖+1 = 𝑥𝑖 –
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
[1 −

𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)

𝑓′′(𝑥𝑖)

2𝑓′(𝑥𝑖)
]

−1

 (3)

Or,

𝑥𝑖+1 = 𝑥𝑖 −
2 𝑓(𝑥𝑖) 𝑓′(𝑥𝑖)

2[𝑓′(𝑥𝑖)]2− 𝑓(𝑥𝑖) 𝑓′′(𝑥𝑖)
 (3b)

The first and second derivatives are calculated using the following central difference

approximations:

𝑓’(𝑥) ⋍ (𝑓(𝑥 + ℎ)– 𝑓(𝑥 − ℎ))/2ℎ (4)

𝑓’’(𝑥) ⋍ (𝑓(𝑥 + ℎ) – 2𝑓(𝑥) + 𝑓(𝑥 − ℎ))/ℎ2 (5)

The Ostrowski Method

While relatively newer than the previous algorithms, I am including the Ostrowski

method in this section, since it is a few decades old. The Ostrowski method generates

two refinements for the root in each iteration, the first refinement is an intermediate

one. The method uses the following two equations:

𝑦𝑖 = 𝑥𝑖 –
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 (6)

𝑥𝑖+1 = 𝑦𝑖 –
𝑓(𝑦𝑖)(𝑥𝑖− 𝑦𝑖)

𝑓(𝑥𝑖)−2𝑓(𝑦𝑖)
 (7)

The Ostrowski method has a convergence rate resembling that of Halley’s method.

Both the Halley and Ostrowski methods require three function calls per iteration.

This number is compared to two function calls (when using the forward or backward

difference approximation to the first derivative) for the Newton method. If you us

 Page 3 of 13

Copyright © 2017 by Namir Clement Shammas

the central difference approximation for the first derivative (which is a bit more

accurate than the forward or backward difference) then each iteration in Newton’s

method makes three function calls. In this case, you already have the basic

information that makes it easy to calculate the second derivative and graduate to

using Halley’s method with a small extra computational effort.

The Super Secant Algorithm
The Super Secant algorithm performs the following tasks for each iteration, given a

guess for the root x for f(x)=0:

1. Let x1=x

2. Calculate h as a small increment of x1, such as 0.01*(1 + |x1|)

3. Calculate x2 = x1 + h

4. Calculate f(x1) and f(x2)

5. Estimate for the derivative f´(x1) = (f(x2) – f(x1))/(x2 – x1)

6. Calculate x3 = x1 – f(x1) / f´(x1)

7. Calculate f(x3) and the slope S as (f(x3) –f(x1))/(x3–x1)

8. Calculate x = x3 – f(x3)/S

9. If |x1–x| >= tolerance then resume at step 1

10. Return x as the refined root

The above steps can be summarized by the following equations:

𝑥2 = 𝑥1 + 0.01 ∗ (1 + |𝑥1|) (8)

𝑥3 = 𝑥1 − 𝑓(𝑥1) ∗ (𝑥2 − 𝑥1)/(𝑓(𝑥2) − 𝑓(𝑥1)) (9)

𝑥1 = 𝑥3 − 𝑓(𝑥3) ∗ (𝑥3 − 𝑥1)/(𝑓(𝑥3) − 𝑓(𝑥1)) (10)

Let me present the pseudo-code for the new Super Secant method. Given the

function f(x)=0, an initial guess, x, and a tolerance Toler for the guess:

 Do

 LastX = X

 X1 = X

 h = 0.01 * (1 + Abs(X))

 F1 = f(X)

 X2 = X1 + h

 F2 = f(X2)

 Deriv1 = (F2 - F1) / h

 Diff = F1 / Deriv1

 X3 = X1 - Diff

 F3 = f(X3)

 Page 4 of 13

Copyright © 2017 by Namir Clement Shammas

 If X3 <> X1 And F1 <> F3 Then

 Deriv1 = (F3 - F1) / (X3 - X1)

 Diff = F3 / Deriv1

 X = X3 - Diff

 Else

 X = X1

 LastX = X

 End If

 Loop Until Abs(LastX - X) < Toler

 Return X as the refined guess for the root.

The Hyper Secant Algorithm
The Hyper Secant algorithm performs the following tasks for each iteration, given a

guess for the root x for f(x)=0:

1. Let x1=x

2. Calculate h as a medium-sized increment of x1, such as 0.1*(1+|x1|)

3. Calculate x2 = x1 + h

4. Calculate f(x1) and f(x2)

5. Estimate for the derivative f´(x1) = (f(x2) – f(x1)) / (x2 – x1)

6. Calculate x3 = x1 – f(x1) / f´(x1)

7. Calculate f(x3)

8. Calculate t1 = x1 * (0 – f(x2) * (0 – f(x3)) / (f(x1) – f(x2)) / (f(x1) – f(x3))

9. Calculate t2 = x2 * (0 – f(x1)) * (0 – f(x3)) / (f(x2) – f(x1)) / (f(x2) – f(x3))

10. Calculate t3 = x3 * (0 – f(x1)) * (0 – f(x2)) / (f(x3) – f(x1)) / (f(x3) – f(x2))

11. Calculate x = t1 + t2 + t3

12. If |x1–x| >= tolerance then resume at step 1

13. Return x as the refined root

Steps 8 through 10 performs an inverse Lagrangian interpolation to calculate x for

f(x)=0, using the points (x1, f(x1)), (x2, f(x2)), and (x3, f(x3)). Thus, the Hyper Secant

method combines the basic/legacy secant method and the inverse Lagrangian

interpolation.

The above steps can be summarized by the following equations:

𝑥2 = 𝑥1 + 0.1 ∗ (1 + |𝑥1|) (11)

𝑥3 = 𝑥1 − 𝑓(𝑥1) ∗ (𝑥2 − 𝑥1) / (𝑓(𝑥2) − 𝑓(𝑥1)) (12)

𝑡1 = 𝑥1 ∗ (0 – 𝑓(𝑥2)) ∗ (0 – 𝑓(𝑥3)) / (𝑓(𝑥1) – 𝑓(𝑥2)) / (𝑓(𝑥1) – 𝑓(𝑥3)) (13)

𝑡2 = 𝑥2 ∗ (0 – 𝑓(𝑥1)) ∗ (0 – 𝑓(𝑥3)) / (𝑓(𝑥2) – 𝑓(𝑥1)) / (𝑓(𝑥2) – 𝑓(𝑥3)) (14)

 Page 5 of 13

Copyright © 2017 by Namir Clement Shammas

𝑡3 = 𝑥3 ∗ (0 – 𝑓(𝑥1)) ∗ (0 – 𝑓(𝑥2)) / (𝑓(𝑥3) – 𝑓(𝑥1)) / (𝑓(𝑥3) – 𝑓(𝑥2)) (15)

𝑥1 = 𝑡1 + 𝑡2 + 𝑡3 (16)

Let me present the pseudo-code for the new Hyper Secant method. Given the

function f(x)=0, an initial guess, x, and a tolerance Toler for the guess:

 Do

 LastX = X

 X1 = X

 h = 0.1 * (1 + Abs(X1))

 F1 = f(X1)

 X2 = X1 + h

 F2 = f(X2)

 Deriv1 = (F2 - F1) / (X2 - X1)

 Diff = F1 / Deriv1

 X3 = X1 - Diff

 F3 = f(X3)

 If F1 <> F2 And F2 <> F3 And F1 <> F3 Then

 T1 = X1 * (0 - F2) * (0 - F3) / (F1 - F2) / (F1 - F3)

 T2 = X2 * (0 - F1) * (0 - F3) / (F2 - F1) / (F2 - F3)

 T3 = X3 * (0 - F1) * (0 - F2) / (F3 - F1) / (F3 - F2)

 X = T1 + T2 + t3

 Else

 X = X3

 LastX = X

 End If

 Loop Until Abs(LastX - X) < Toler

 Return X as the refined guess for the root.

Excel VBA Code
I present Excel VBA code that calculates roots using the methods of Newton, Halley,

Ostrowski, and the new Super and Hyper Secant algorithms. Figure 1 shows a

sample worksheet. You can download the Excel file that contains all the VBA code

and the worksheets for the various tested functions.

Figure 1. Sample Worksheet.

Note the following cells and columns in Figure 1:

 Page 6 of 13

Copyright © 2017 by Namir Clement Shammas

• Cell A2 has the initial guess for the root.

• Cell A4 has the tolerance value.

• Cell A6 has the expression for f(x).

• Columns B and C show the output for the refined root values and their

function values for Newton’s method. The bottommost items in these two

columns display the number of function calls for Newton’s method.

• Columns D and E show the output for the refined root values and their

function values for Halley’s method. The bottommost items in these two the

number of function calls for Halley’s method.

• Columns F and G show the output for the refined root values and their function

values for Ostrowski’s method. The bottommost items in these two columns

display the number of function calls for Ostrowski’s method.

• Columns H, I, and J show the output for intermediate refined root values, the

refined root values, and their function values for the new Super Secant

method. The bottommost items in these two columns display the number of

function calls for the Super Secant method.

• Columns K, L, and M show the output for intermediate refined root values,

the refined root values, and their function values for the new Hyper Secant

method. The bottommost items in these two columns display the number of

function calls for the Hyper Secant method.

Here is the VBA code listing:

Option Explicit

Function Fx(ByVal sFx As String, ByVal X As Double) As Double

 sFx = Replace(sFx, "EXP(", "!")

 sFx = Replace(sFx, "X", "(" & X & ")")

 sFx = Replace(sFx, "!", "EXP(")

 Fx = Evaluate(sFx)

End Function

Sub doAll()

 Dim I As Integer, N As Integer

 If MsgBox("Recalculate roots in ALL worksheets containing name

'Roots'?", vbQuestion + vbYesNo, "Query") = vbNo Then

 Exit Sub

 End If

 N = Worksheets.Count

 For I = 1 To N

 Page 7 of 13

Copyright © 2017 by Namir Clement Shammas

 'MsgBox Sheets(I).Name

 If InStr(Sheets(I).Name, "Roots") > 0 Then

 Sheets(I).Select

 Call Go

 End If

 Next I

End Sub

Sub Go()

 Dim R As Long, C As Double

 Dim X As Double, h As Double, Diff As Double

 Dim X1 As Double, X2 As Double, X3 As Double

 Dim F1 As Double, F2 As Double, F3 As Double

 Dim F0 As Double, Deriv1 As Double, Deriv2 As Double

 Dim Fp As Double, Fm As Double, LastX As Double,

 Dim Toler As Double, Z As Double, Fz As Double

 Dim sFx As String

 X = [A2].Value

 Toler = [A4].Value

 sFx = [A6].Value

 sFx = UCase(Replace(sFx, " ", ""))

 Range("B2:z1000").Clear

 On Error GoTo HandleErr

 ' Newton's method

 R = 2

 C = 2

 Do

 h = 0.01 * (1 + Abs(X))

 F0 = Fx(sFx, X)

 Diff = h * F0 / (Fx(sFx, X + h) - F0)

 X = X - Diff

 Cells(R, C) = X

 Cells(R, C + 1) = Fx(sFx, X)

 R = R + 1

 Loop Until Abs(Diff) < Toler Or R > 1000

 Cells(R + 1, C) = "Fx Calls="

 Cells(R + 1, C + 1) = 2 * (R - 2)

 ' Halley

 R = 2

 C = C + 2

 X = [A2].Value

 Do

 h = 0.01 * (1 + Abs(X))

 Page 8 of 13

Copyright © 2017 by Namir Clement Shammas

 F0 = Fx(sFx, X)

 Fp = Fx(sFx, X + h)

 Fm = Fx(sFx, X - h)

 Deriv1 = (Fp - Fm) / 2 / h

 Deriv2 = (Fp - 2 * F0 + Fm) / h / h

 Diff = F0 / Deriv1 / (1 - F0 * Deriv2 / Deriv1 / 2 / Deriv1)

 X = X - Diff

 Cells(R, C) = X

 Cells(R, C + 1) = Fx(sFx, X)

 R = R + 1

 Loop Until Abs(Diff) < Toler

 Cells(R + 1, C) = "Fx Calls="

 Cells(R + 1, C + 1) = 3 * (R - 2)

 ' Ostrowski

 R = 2

 C = C + 2

 X = [A2].Value

 Do

 LastX = X

 h = 0.01 * (1 + Abs(X))

 F0 = Fx(sFx, X)

 Fp = Fx(sFx, X + h)

 Deriv1 = (Fp - F0) / h

 Z = X - F0 / Deriv1

 Fz = Fx(sFx, Z)

 X = Z - Fz * (X - Z) / (F0 - 2 * Fz)

 Cells(R, C) = X

 Cells(R, C + 1) = Fx(sFx, X)

 R = R + 1

 Loop Until Abs(X - LastX) < Toler Or R > 1000

 Cells(R + 1, C) = "Fx Calls="

 Cells(R + 1, C + 1) = 3 * (R - 2)

 ' Super-Secant

 R = 2

 C = C + 2

 X = [A2].Value

 Do

 LastX = X

 X1 = X

 h = 0.01 * (1 + Abs(X))

 F1 = Fx(sFx, X)

 X2 = X1 + h

 F2 = Fx(sFx, X2)

 Deriv1 = (F2 - F1) / h

 Page 9 of 13

Copyright © 2017 by Namir Clement Shammas

 Diff = F1 / Deriv1

 X3 = X1 - Diff

 F3 = Fx(sFx, X3)

 If X3 <> X1 And F1 <> F3 Then

 Deriv1 = (F3 - F1) / (X3 - X1)

 Diff = F3 / Deriv1

 X = X3 - Diff

 Else

 X = X3

 LastX = X

 End If

 Cells(R, C) = X1

 Cells(R, C + 1) = X

 Cells(R, C + 2) = Fx(sFx, X)

 R = R + 1

 Loop Until Abs(LastX - X) < Toler Or R > 1000

 Cells(R + 1, C + 1) = "Fx Calls="

 Cells(R + 1, C + 2) = 3 * (R - 2)

 ' Hyper-Secant

 R = 2

 C = C + 3

 X = [A2].Value

 Do

 LastX = X

 X1 = X

 h = 0.1 * (1 + Abs(X1))

 F1 = Fx(sFx, X1)

 X2 = X1 + h

 F2 = Fx(sFx, X2)

 Deriv1 = (F2 - F1) / (X2 - X1)

 Diff = F1 / Deriv1

 X3 = X1 - Diff

 F3 = Fx(sFx, X3)

 If F1 <> F2 And F2 <> F3 And F1 <> F3 Then

 X = X1 * (0 - F2) * (0 - F3) / (F1 - F2) / (F1 - F3) + _

 X2 * (0 - F1) * (0 - F3) / (F2 - F1) / (F2 - F3) + _

 X3 * (0 - F1) * (0 - F2) / (F3 - F1) / (F3 - F2)

 Else

 X = X3

 LastX = X

 End If

 Cells(R, C) = X1

 Cells(R, C + 1) = X

 Cells(R, C + 2) = Fx(sFx, X)

 R = R + 1

 Loop Until Abs(LastX - X) < Toler Or R > 1000

 Page 10 of 13

Copyright © 2017 by Namir Clement Shammas

 Cells(R + 1, C + 1) = "Fx Calls="

 Cells(R + 1, C + 2) = 3 * (R - 2)

ExitProc:

 Exit Sub

End Sub

Testing and Comparing the Algorithms
Table 1 shows the list of test functions. The first two functions are ones that I have

chosen. The remaining functions come from the Table II in the article by Galdino,

Sérgio (2011). "A family of regula falsi root-finding methods". Proceedings of 2011

World Congress on Engineering and Technology. 1. Retrieved 9 September 2016. I

am using the same function numbers in Table 1 as in Table II in the article by Sérgio.

I skipped functions 16 and 17 in Table II. I would like to point out that Table II, in

the article by Sérgio, erroneously replicates function number 16 and 17 as function

number 19 and 20, respectively. Table 1 shows the corrected form of function

number 19 and 20, which are variants of function number 18.

Function Number F(x)=

Custom 1 sin(x-1)/(x-1)-1

Custom 2 exp(x)-3*x^2

2 x^2*(x^2/3+sqrt(2)*sin(x))-sqrt(3/18)

3 11*x^11-1

4 x^3+1

5 x^3-3*x-5

6 2*x*exp(-5)+1-2*exp(-5*x)

7 2*x*exp(-10)+1-2*exp(-10*x)

8 2*x*exp(-20)+1-2*exp(-20*x)
9 (1+(1-5)^2)*x^2-(1-5*x)^2

10 (1+(1-10)^2)*x^2-(1-10*x)^2
11 (1+(1-20)^2)*x^2-(1-20*x)^2
12 x^2-(1-x)^5
13 x^2-(1-x)^10
14 x^2-(1-x)^20
15 (1+(1-5)^4)*x-(1-5*x)^4
18 exp(-5*x)*(x-1)+x^5
19 exp(-10*x)*(x-1)+x^10
20 exp(-20*x)*(x-1)+x^20
21 x^2+sin(x/5)-0.25

 Page 11 of 13

Copyright © 2017 by Namir Clement Shammas

Function Number F(x)=

22 x^2+sin(x/10)-0.25
23 x^2+sin(x/20)-0.25

Table 1. List of test functions.

Table 2 shows the results that compare the efficiency of the various algorithms. The

comma-delimited results report the number of iterations and the number of function

calls. Remember that the Newton, Halley, Ostrowski, and the two new algorithms

use 2, 3, 3, 3, and 3 function calls, per iterations, respectively. The table shows one,

two, and three different guesses for various test functions. The tolerance value for

all the calculations is 1E-9.

Function

Number

Initial

Guess

Newton Halley Ostrowski Super

Secant

Hyper

Secant

Custom 1 0 Failed 16, 48 Failed 20, 60 17, 51

Custom 2 3 13, 26 6, 18 6, 18 7, 21 6, 18

Custom 2 5 10, 20 6, 18 6, 18 5, 15 6, 18

Custom 2 -1 7, 14 4, 12 4, 12 4, 12 4, 12

Custom 2 1 6, 12 4, 12 4, 12 3, 9 3, 9

2 1 8 , 16 5, 15 5, 15 5, 15 5, 15

3 1 12, 24 7, 21 7, 21 6, 18 7, 21

4 -1.8 8, 16 5, 15 5, 15 5, 15 5, 15

5 3 8, 16 5, 15 5, 15 4, 12 4, 12

6 0 8, 16 5, 15 5, 15 4, 12 4, 12

6 1 59, 118 6, 18 18, 54 failed 22, 66

7 0 8, 16 5, 15 5, 15 4, 12 4, 12

8 0` 8, 16 5, 15 5, 15 4, 12 6, 18

9 0 6, 12 3, 9 4, 12 4, 12 3, 9

9 1 7, 14 4, 12 4, 12 4, 12 4, 12

10 0 6, 12 3, 9 4, 12 3, 9 3, 9

10 1 6, 12 3, 9 4, 12 3, 9 3, 9

11 0 5, 10 3, 9 3, 9 3, 9 3, 9

11 1 6, 12 3, 9 4, 12 3, 9 3, 9

12 0 8, 16 5, 15 4, 12 5, 15 4, 12

12 1 6, 12 5, 15 5, 15 3, 12 3, 12

13 0 9, 18 5, 15 5, 15 5, 15 4, 12

13 1 9, 18 6, 18 5, 15 5, 15 5, 15

14 0 11, 22 7, 21 6, 18 6, 18 4, 12

14 1 11, 22 7, 21 6, 18 5, 15 5, 15

 Page 12 of 13

Copyright © 2017 by Namir Clement Shammas

Function

Number

Initial

Guess

Newton Halley Ostrowski Super

Secant

Hyper

Secant

15 0 4, 8 3, 9 3, 9 3, 9 3, 9

15 1 6, 12 3, 9 4, 12 3, 9 3, 9

18 0 9, 18 6, 18 5, 15 5, 15 4, 12

18 1 9, 18 5, 15 5, 15 5, 15 5, 15

19 0 12, 24 8, 24 7, 21 7, 21 6, 18

19 1 14, 28 7, 21 7, 21 7, 21 9, 27

20 0 19, 38 12, 36 11, 33 10, 30 8, 24

20 1 24, 48 13, 39 8, 24 12, 36 15, 45

21 0 9, 18 5, 15 5, 15 5, 15 5, 15

21 1 8, 16 4, 12 5, 15 4, 12 4, 12

22 0 10, 20 6, 18 6, 18 6, 18 5, 15

22 1 8, 16 4, 12 5, 15 4, 12 4, 12

23 0 11, 22 6, 18 6, 18 6, 18 6, 18

23 1 8, 16 4, 12 5, 15 4, 12 4, 12

Table 2. Test functions for different algorithms showing the initial guesses, and the

number of iterations and total function calls for each algorithm.

Looking at Table 2, you can see that the new Super & Hyper Secant algorithm do

well. I use red fonts to indicate the minimum number of function calls and the

minimum number of iterations. The new algorithms perform well compared to

Newton’s method and do slightly better than Halley and Ostrowski’s methods. Thus,

you have two new algorithms that you can add in your root-seeking toolbox.

Note
If you download the ZIP file containing the Excel file that contains the test functions,

you can use either Excel file in the following ways:

1. Single-sheet mode. Select (or even create a copy of) a worksheet for a function

you want to test. Optionally update all or some of the input parameters in cells

A2, A4, and/or A6. Execute the macro Go() to perform the calculations on the

tested root-seeking algorithms.

2. Multiple-sheets mode. You can optionally update all or some the input

parameters in cells A2, A4, and/or A6, in all or some of the worksheets. To

recalculate the roots in ALL of the worksheets execute macro doAll(). This

macro will display a prompt message asking you to verify if you wish to

recalculate the roots in ALL of the worksheets. Click the Yes button to

proceed or click the No button to exit. The macro will quickly visit each

 Page 13 of 13

Copyright © 2017 by Namir Clement Shammas

worksheet containing the word “Roots” in its tab name and perform the

calculations. If there are no runtime errors, this macro will perform its task

very quickly.

