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Introduction 
Ostrowski was a Russian mathematician who taught for many years at the University 

of Basil, Switzerland. He proposed an enhancement to Newton’s root seeking 

algorithm. Ostrowski suggested a new twist such that each iteration offers two 

refinements for the root—one of them being intermediate. The Ostrowski algorithm 

matches Halley’s root-seeking algorithm in its third order rate of convergence. 

Recently, the Ostrowski algorithm inspired many mathematicians to device root-

seeking algorithms with two or more refinements to the root per iteration. 

I recently applied Ostrowski’s approach to Halley’s method and was able to produce 

a good working algorithm. I decided to further experiment with applying 

Ostrowski’s basic approach to the secant method, which itself is a rough and good 

approximation of Newton’s method. I was able to generate two algorithms—the 

Super Secant and the Hyper Secant methods. 

Legacy Root-Seeking Algorithms 
In this section, we briefly discuss the root-seeking methods of Newton, Halley, and 

Ostrowski. If you are already familiar with these algorithms you can skip to the 

section that describes the new algorithms. 

The Newton Method 

One of the most popular root-seeking algorithms is the Newton method (also called 

the Newton-Raphson method). While Isaac Newton had little to do with the 

algorithm in its current form, it was Thomas Simpson (better known for Simpson’s 

rule for numerical integration) who gave it its name and homage to Sir Isaac Newton. 

The equation for Newton’s method that refined a guess for the root is: 

𝑥𝑖+1 =  𝑥𝑖  – 
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
         (1) 
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Equation 1 requires evaluating the function f(x) and it’s derivative f’(x) which can 

be approximated using the forward difference approximation: 

𝑓’(𝑥)  ⋍  (𝑓(𝑥 + ℎ) –  𝑓(𝑥))/ℎ      (2) 

Where h = 0.02(1 + |x|). Newton’s method usually converges at a second order rate. 

The Halley Method 

Halley devised a method for calculating roots that has a third order convergence rate. 

The root-refining equation for this algorithm is: 

𝑥𝑖+1 =  𝑥𝑖  – 
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
[1 − 

𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 

𝑓′′(𝑥𝑖)

2𝑓′(𝑥𝑖)
]

−1

     (3) 

Or, 

𝑥𝑖+1 =  𝑥𝑖 −  
2 𝑓(𝑥𝑖) 𝑓′(𝑥𝑖)

2[𝑓′(𝑥𝑖)]2− 𝑓(𝑥𝑖) 𝑓′′(𝑥𝑖)
      (3b) 

The first and second derivatives are calculated using the following central difference 

approximations: 

𝑓’(𝑥)  ⋍  (𝑓(𝑥 + ℎ)–  𝑓(𝑥 − ℎ))/2ℎ     (4) 

𝑓’’(𝑥)  ⋍  (𝑓(𝑥 + ℎ) –  2𝑓(𝑥) + 𝑓(𝑥 − ℎ))/ℎ2   (5) 

The Ostrowski Method 

While relatively newer than the previous algorithms, I am including the Ostrowski 

method in this section, since it is a few decades old. The Ostrowski method generates 

two refinements for the root in each iteration, the first refinement is an intermediate 

one. The method uses the following two equations: 

𝑦𝑖 =  𝑥𝑖  – 
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
         (6) 

𝑥𝑖+1 =  𝑦𝑖  – 
𝑓(𝑦𝑖)(𝑥𝑖− 𝑦𝑖)

𝑓(𝑥𝑖)−2𝑓(𝑦𝑖)
        (7) 

The Ostrowski method has a convergence rate resembling that of Halley’s method. 

Both the Halley and Ostrowski methods require three function calls per iteration. 

This number is compared to two function calls (when using the forward or backward 

difference approximation to the first derivative) for the Newton method. If you us 
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the central difference approximation for the first derivative (which is a bit more 

accurate than the forward or backward difference) then each iteration in Newton’s 

method makes three function calls. In this case, you already have the basic 

information that makes it easy to calculate the second derivative and graduate to 

using Halley’s method with a small extra computational effort. 

The Super Secant Algorithm 
The Super Secant algorithm performs the following tasks for each iteration, given a 

guess for the root x for f(x)=0: 

1. Let x1=x 

2. Calculate h as a small increment of x1, such as 0.01*(1 + |x1|) 

3. Calculate x2 = x1 + h 

4. Calculate f(x1) and f(x2) 

5. Estimate for the derivative f´(x1) = (f(x2) – f(x1))/(x2 – x1) 

6. Calculate x3 = x1 – f(x1) / f´(x1) 

7. Calculate f(x3) and the slope S as (f(x3) –f(x1))/(x3–x1) 

8. Calculate x = x3 – f(x3)/S 

9. If |x1–x| >= tolerance then resume at step 1 

10.  Return x as the refined root 

The above steps can be summarized by the following equations: 

𝑥2 = 𝑥1 +  0.01 ∗ (1 + |𝑥1|)        (8) 

𝑥3 = 𝑥1  − 𝑓(𝑥1) ∗ (𝑥2 − 𝑥1)/(𝑓(𝑥2) − 𝑓(𝑥1))     (9) 

𝑥1 = 𝑥3  − 𝑓(𝑥3) ∗ (𝑥3 − 𝑥1)/(𝑓(𝑥3) − 𝑓(𝑥1))     (10) 

Let me present the pseudo-code for the new Super Secant method. Given the 

function f(x)=0, an initial guess, x, and a tolerance Toler for the guess: 

  Do 

    LastX = X 

    X1 = X 

    h = 0.01 * (1 + Abs(X)) 

    F1 = f(X) 

    X2 = X1 + h 

    F2 = f(X2) 

    Deriv1 = (F2 - F1) / h 

    Diff = F1 / Deriv1 

    X3 = X1 - Diff 

    F3 = f(X3) 
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    If X3 <> X1 And F1 <> F3 Then 

      Deriv1 = (F3 - F1) / (X3 - X1) 

      Diff = F3 / Deriv1 

      X = X3 - Diff 

    Else 

      X = X1 

      LastX = X 

    End If 

  Loop Until Abs(LastX - X) < Toler 

  Return X as the refined guess for the root. 

The Hyper Secant Algorithm  
The Hyper Secant algorithm performs the following tasks for each iteration, given a 

guess for the root x for f(x)=0: 

1. Let x1=x 

2. Calculate h as a medium-sized increment of x1, such as 0.1*(1+|x1|) 

3. Calculate x2 = x1 + h 

4. Calculate f(x1) and f(x2) 

5. Estimate for the derivative f´(x1) = (f(x2) – f(x1)) / (x2 – x1) 

6. Calculate x3 = x1 – f(x1) / f´(x1) 

7. Calculate f(x3) 

8. Calculate t1 = x1 * (0 – f(x2) * (0 – f(x3)) / (f(x1) – f(x2)) / (f(x1) – f(x3))  

9. Calculate t2 = x2 * (0 – f(x1)) * (0 – f(x3)) / (f(x2) – f(x1)) / (f(x2) – f(x3)) 

10.  Calculate t3 = x3 * (0 – f(x1)) * (0 – f(x2)) / (f(x3) – f(x1)) / (f(x3) – f(x2)) 

11.  Calculate x = t1 + t2 + t3 

12.  If |x1–x| >= tolerance then resume at step 1 

13.  Return x as the refined root 

Steps 8 through 10 performs an inverse Lagrangian interpolation to calculate x for 

f(x)=0, using the points (x1, f(x1)), (x2, f(x2)), and (x3, f(x3)). Thus, the Hyper Secant 

method combines the basic/legacy secant method and the inverse Lagrangian 

interpolation. 

The above steps can be summarized by the following equations: 

𝑥2 = 𝑥1 +  0.1 ∗ (1 + |𝑥1|)        (11) 

𝑥3 = 𝑥1  − 𝑓(𝑥1) ∗ (𝑥2 − 𝑥1) / (𝑓(𝑥2) − 𝑓(𝑥1))     (12) 

𝑡1 =  𝑥1 ∗ (0 –  𝑓(𝑥2)) ∗ (0 –  𝑓(𝑥3)) / (𝑓(𝑥1) –  𝑓(𝑥2)) / (𝑓(𝑥1) –  𝑓(𝑥3)) (13) 

𝑡2 =  𝑥2 ∗ (0 –  𝑓(𝑥1)) ∗ (0 –  𝑓(𝑥3)) / (𝑓(𝑥2) –  𝑓(𝑥1)) / (𝑓(𝑥2) –  𝑓(𝑥3)) (14) 
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𝑡3 =  𝑥3 ∗ (0 –  𝑓(𝑥1)) ∗ (0 –  𝑓(𝑥2)) / (𝑓(𝑥3) –  𝑓(𝑥1)) / (𝑓(𝑥3) –  𝑓(𝑥2)) (15) 

𝑥1 = 𝑡1 +  𝑡2 +  𝑡3          (16) 

Let me present the pseudo-code for the new Hyper Secant method. Given the 

function f(x)=0, an initial guess, x, and a tolerance Toler for the guess: 

  Do 

    LastX = X 

    X1 = X 

    h = 0.1 * (1 + Abs(X1)) 

    F1 = f(X1) 

    X2 = X1 + h 

    F2 = f(X2) 

    Deriv1 = (F2 - F1) / (X2 - X1) 

    Diff = F1 / Deriv1 

    X3 = X1 - Diff 

    F3 = f(X3) 

    If F1 <> F2 And F2 <> F3 And F1 <> F3 Then 

      T1 = X1 * (0 - F2) * (0 - F3) / (F1 - F2) / (F1 - F3)  

      T2 = X2 * (0 - F1) * (0 - F3) / (F2 - F1) / (F2 - F3) 

      T3 = X3 * (0 - F1) * (0 - F2) / (F3 - F1) / (F3 - F2) 

      X = T1 + T2 + t3 

    Else 

      X = X3 

      LastX = X 

    End If 

  Loop Until Abs(LastX - X) < Toler  

  Return X as the refined guess for the root. 

Excel VBA Code 
I present Excel VBA code that calculates roots using the methods of Newton, Halley, 

Ostrowski, and the new Super and Hyper Secant algorithms. Figure 1 shows a 

sample worksheet. You can download the Excel file that contains all the VBA code 

and the worksheets for the various tested functions. 

 

Figure 1. Sample Worksheet. 

Note the following cells and columns in Figure 1: 
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• Cell A2 has the initial guess for the root. 

• Cell A4 has the tolerance value. 

• Cell A6 has the expression for f(x).  

• Columns B and C show the output for the refined root values and their 

function values for Newton’s method. The bottommost items in these two 

columns display the number of function calls for Newton’s method. 

• Columns D and E show the output for the refined root values and their 

function values for Halley’s method. The bottommost items in these two the 

number of function calls for Halley’s method. 

• Columns F and G show the output for the refined root values and their function 

values for Ostrowski’s method. The bottommost items in these two columns 

display the number of function calls for Ostrowski’s method. 

• Columns H, I, and J show the output for intermediate refined root values, the 

refined root values, and their function values for the new Super Secant 

method. The bottommost items in these two columns display the number of 

function calls for the Super Secant method. 

• Columns K, L, and M show the output for intermediate refined root values, 

the refined root values, and their function values for the new Hyper Secant 

method. The bottommost items in these two columns display the number of 

function calls for the Hyper Secant method. 

Here is the VBA code listing: 

Option Explicit 

 

Function Fx(ByVal sFx As String, ByVal X As Double) As Double 

  sFx = Replace(sFx, "EXP(", "!") 

  sFx = Replace(sFx, "X", "(" & X & ")") 

  sFx = Replace(sFx, "!", "EXP(") 

  Fx = Evaluate(sFx) 

End Function 

 

Sub doAll() 

  Dim I As Integer, N As Integer 

   

  If MsgBox("Recalculate roots in ALL worksheets containing name 

'Roots'?", vbQuestion + vbYesNo, "Query") = vbNo Then 

    Exit Sub 

  End If 

   

  N = Worksheets.Count 

  For I = 1 To N 
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    'MsgBox Sheets(I).Name 

    If InStr(Sheets(I).Name, "Roots") > 0 Then 

      Sheets(I).Select 

      Call Go 

    End If 

  Next I 

End Sub 

 

Sub Go() 

  Dim R As Long, C As Double 

  Dim X As Double, h As Double, Diff As Double 

  Dim X1 As Double, X2 As Double, X3 As Double 

  Dim F1 As Double, F2 As Double, F3 As Double 

  Dim F0 As Double, Deriv1 As Double, Deriv2 As Double 

  Dim Fp As Double, Fm As Double, LastX As Double,  

  Dim Toler As Double, Z As Double, Fz As Double 

  Dim sFx As String 

   

  X = [A2].Value 

  Toler = [A4].Value 

  sFx = [A6].Value 

  sFx = UCase(Replace(sFx, " ", "")) 

   

  Range("B2:z1000").Clear 

   On Error GoTo HandleErr 

    

  ' Newton's method 

  R = 2 

  C = 2 

  Do 

    h = 0.01 * (1 + Abs(X)) 

    F0 = Fx(sFx, X) 

    Diff = h * F0 / (Fx(sFx, X + h) - F0) 

    X = X - Diff 

    Cells(R, C) = X 

    Cells(R, C + 1) = Fx(sFx, X) 

    R = R + 1 

  Loop Until Abs(Diff) < Toler Or R > 1000 

  Cells(R + 1, C) = "Fx Calls=" 

  Cells(R + 1, C + 1) = 2 * (R - 2) 

   

  ' Halley 

  R = 2 

  C = C + 2 

  X = [A2].Value 

  Do 

    h = 0.01 * (1 + Abs(X)) 
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    F0 = Fx(sFx, X) 

    Fp = Fx(sFx, X + h) 

    Fm = Fx(sFx, X - h) 

    Deriv1 = (Fp - Fm) / 2 / h 

    Deriv2 = (Fp - 2 * F0 + Fm) / h / h 

    Diff = F0 / Deriv1 / (1 - F0 * Deriv2 / Deriv1 / 2 / Deriv1) 

    X = X - Diff 

    Cells(R, C) = X 

    Cells(R, C + 1) = Fx(sFx, X) 

    R = R + 1 

  Loop Until Abs(Diff) < Toler 

  Cells(R + 1, C) = "Fx Calls=" 

  Cells(R + 1, C + 1) = 3 * (R - 2) 

   

  ' Ostrowski 

  R = 2 

  C = C + 2 

  X = [A2].Value 

  Do 

    LastX = X 

    h = 0.01 * (1 + Abs(X)) 

    F0 = Fx(sFx, X) 

    Fp = Fx(sFx, X + h) 

    Deriv1 = (Fp - F0) / h 

    Z = X - F0 / Deriv1 

    Fz = Fx(sFx, Z) 

    X = Z - Fz * (X - Z) / (F0 - 2 * Fz) 

    Cells(R, C) = X 

    Cells(R, C + 1) = Fx(sFx, X) 

    R = R + 1 

  Loop Until Abs(X - LastX) < Toler Or R > 1000 

  Cells(R + 1, C) = "Fx Calls=" 

  Cells(R + 1, C + 1) = 3 * (R - 2) 

   

   

  ' Super-Secant 

  R = 2 

  C = C + 2 

  X = [A2].Value 

  Do 

    LastX = X 

    X1 = X 

    h = 0.01 * (1 + Abs(X)) 

    F1 = Fx(sFx, X) 

    X2 = X1 + h 

    F2 = Fx(sFx, X2) 

    Deriv1 = (F2 - F1) / h 
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    Diff = F1 / Deriv1 

    X3 = X1 - Diff 

    F3 = Fx(sFx, X3) 

    If X3 <> X1 And F1 <> F3 Then 

      Deriv1 = (F3 - F1) / (X3 - X1) 

      Diff = F3 / Deriv1 

      X = X3 - Diff 

    Else 

      X = X3 

      LastX = X 

    End If 

    Cells(R, C) = X1 

    Cells(R, C + 1) = X 

    Cells(R, C + 2) = Fx(sFx, X) 

    R = R + 1 

  Loop Until Abs(LastX - X) < Toler Or R > 1000 

  Cells(R + 1, C + 1) = "Fx Calls=" 

  Cells(R + 1, C + 2) = 3 * (R - 2) 

 

  ' Hyper-Secant 

  R = 2 

  C = C + 3 

  X = [A2].Value 

  Do 

    LastX = X 

    X1 = X 

    h = 0.1 * (1 + Abs(X1)) 

    F1 = Fx(sFx, X1) 

    X2 = X1 + h 

    F2 = Fx(sFx, X2) 

    Deriv1 = (F2 - F1) / (X2 - X1) 

    Diff = F1 / Deriv1 

    X3 = X1 - Diff 

    F3 = Fx(sFx, X3) 

    If F1 <> F2 And F2 <> F3 And F1 <> F3 Then 

      X = X1 * (0 - F2) * (0 - F3) / (F1 - F2) / (F1 - F3) + _ 

          X2 * (0 - F1) * (0 - F3) / (F2 - F1) / (F2 - F3) + _ 

          X3 * (0 - F1) * (0 - F2) / (F3 - F1) / (F3 - F2) 

    Else 

      X = X3 

      LastX = X 

    End If 

    Cells(R, C) = X1 

    Cells(R, C + 1) = X 

    Cells(R, C + 2) = Fx(sFx, X) 

    R = R + 1 

  Loop Until Abs(LastX - X) < Toler Or R > 1000 
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  Cells(R + 1, C + 1) = "Fx Calls=" 

  Cells(R + 1, C + 2) = 3 * (R - 2) 

   

ExitProc: 

  Exit Sub 

End Sub 

Testing and Comparing the Algorithms 
Table 1 shows the list of test functions. The first two functions are ones that I have 

chosen. The remaining functions come from the Table II in the article by Galdino, 

Sérgio (2011). "A family of regula falsi root-finding methods". Proceedings of 2011 

World Congress on Engineering and Technology. 1. Retrieved 9 September 2016. I 

am using the same function numbers in Table 1 as in Table II in the article by Sérgio. 

I skipped functions 16 and 17 in Table II. I would like to point out that Table II, in 

the article by Sérgio, erroneously replicates function number 16 and 17 as function 

number 19 and 20, respectively. Table 1 shows the corrected form of function 

number 19 and 20, which are variants of function number 18. 

Function Number F(x)= 

Custom 1 sin(x-1)/(x-1)-1 

Custom 2 exp(x)-3*x^2 

2 x^2*(x^2/3+sqrt(2)*sin(x))-sqrt(3/18) 

3 11*x^11-1 

4 x^3+1 

5 x^3-3*x-5 

6 2*x*exp(-5)+1-2*exp(-5*x) 

7 2*x*exp(-10)+1-2*exp(-10*x) 

8 2*x*exp(-20)+1-2*exp(-20*x) 
9 (1+(1-5)^2)*x^2-(1-5*x)^2 

10 (1+(1-10)^2)*x^2-(1-10*x)^2 
11 (1+(1-20)^2)*x^2-(1-20*x)^2 
12 x^2-(1-x)^5 
13 x^2-(1-x)^10 
14 x^2-(1-x)^20 
15 (1+(1-5)^4)*x-(1-5*x)^4 
18 exp(-5*x)*(x-1)+x^5 
19 exp(-10*x)*(x-1)+x^10 
20 exp(-20*x)*(x-1)+x^20 
21 x^2+sin(x/5)-0.25 
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Function Number F(x)= 

22 x^2+sin(x/10)-0.25 
23 x^2+sin(x/20)-0.25 

Table 1. List of test functions. 

Table 2 shows the results that compare the efficiency of the various algorithms. The 

comma-delimited results report the number of iterations and the number of function 

calls. Remember that the Newton, Halley, Ostrowski, and the two new algorithms 

use 2, 3, 3, 3, and 3 function calls, per iterations, respectively. The table shows one, 

two, and three different guesses for various test functions. The tolerance value for 

all the calculations is 1E-9.  

Function 

Number 

Initial 

Guess 

Newton Halley Ostrowski Super 

Secant 

Hyper 

Secant 

Custom 1 0 Failed 16, 48 Failed 20, 60 17, 51 

Custom 2 3 13, 26 6, 18 6, 18 7, 21 6, 18 

Custom 2 5 10, 20 6, 18 6, 18 5, 15 6, 18 

Custom 2 -1 7, 14 4, 12 4, 12 4, 12 4, 12 

Custom 2 1 6, 12 4, 12 4, 12 3, 9 3, 9 

2 1 8 , 16 5, 15 5, 15 5, 15 5, 15 

3 1 12, 24 7, 21 7, 21 6, 18 7, 21 

4 -1.8 8, 16 5, 15 5, 15 5, 15 5, 15 

5 3 8, 16 5, 15 5, 15 4, 12 4, 12 

6 0 8, 16 5, 15 5, 15 4, 12 4, 12 

6 1 59, 118 6, 18 18, 54 failed 22, 66 

7 0 8, 16 5, 15 5, 15 4, 12 4, 12 

8 0` 8, 16 5, 15 5, 15 4, 12 6, 18 

9 0 6, 12 3, 9 4, 12 4, 12 3, 9 

9 1 7, 14 4, 12 4, 12 4, 12 4, 12 

10 0 6, 12 3, 9 4, 12 3, 9 3, 9 

10 1 6, 12 3, 9 4, 12 3, 9 3, 9 

11 0 5, 10 3, 9 3, 9 3, 9 3, 9 

11 1 6, 12 3, 9 4, 12 3, 9 3, 9 

12 0 8, 16 5, 15 4, 12 5, 15 4, 12 

12 1 6, 12 5, 15 5, 15 3, 12 3, 12 

13 0 9, 18 5, 15 5, 15 5, 15 4, 12 

13 1 9, 18 6, 18 5, 15 5, 15 5, 15 

14 0 11, 22 7, 21 6, 18 6, 18 4, 12 

14 1 11, 22 7, 21 6, 18 5, 15 5, 15 
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Function 

Number 

Initial 

Guess 

Newton Halley Ostrowski Super 

Secant 

Hyper 

Secant 

15 0 4, 8 3, 9 3, 9 3, 9 3, 9 

15 1 6, 12 3, 9 4, 12 3, 9 3, 9 

18 0 9, 18 6, 18 5, 15 5, 15 4, 12 

18 1 9, 18 5, 15 5, 15 5, 15 5, 15 

19 0 12, 24 8, 24 7, 21 7, 21 6, 18 

19 1 14, 28 7, 21 7, 21 7, 21 9, 27 

20 0 19, 38 12, 36 11, 33 10, 30 8, 24 

20 1 24, 48 13, 39 8, 24 12, 36 15, 45 

21 0 9, 18 5, 15 5, 15 5, 15 5, 15 

21 1 8, 16 4, 12 5, 15 4, 12 4, 12 

22 0 10, 20 6, 18 6, 18 6, 18 5, 15 

22 1 8, 16 4, 12 5, 15 4, 12 4, 12 

23 0 11, 22 6, 18 6, 18 6, 18 6, 18 

23 1 8, 16 4, 12 5, 15 4, 12 4, 12 

Table 2. Test functions for different algorithms showing the initial guesses, and the 

number of iterations and total function calls for each algorithm. 

Looking at Table 2, you can see that the new Super & Hyper Secant algorithm do 

well. I use red fonts to indicate the minimum number of function calls and the 

minimum number of iterations. The new algorithms perform well compared to 

Newton’s method and do slightly better than Halley and Ostrowski’s methods. Thus, 

you have two new algorithms that you can add in your root-seeking toolbox. 

Note 
If you download the ZIP file containing the Excel file that contains the test functions, 

you can use either Excel file in the following ways: 

1. Single-sheet mode. Select (or even create a copy of) a worksheet for a function 

you want to test. Optionally update all or some of the input parameters in cells 

A2, A4, and/or A6. Execute the macro Go() to perform the calculations on the 

tested root-seeking algorithms. 

2. Multiple-sheets mode. You can optionally update all or some the input 

parameters in cells A2, A4, and/or A6, in all or some of the worksheets. To 

recalculate the roots in ALL of the worksheets execute macro doAll(). This 

macro will display a prompt message asking you to verify if you wish to 

recalculate the roots in ALL of the worksheets. Click the Yes button to 

proceed or click the No button to exit. The macro will quickly visit each 
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worksheet containing the word “Roots” in its tab name and perform the 

calculations. If there are no runtime errors, this macro will perform its task 

very quickly. 


