
What Secret the Bisection Method Hides? 1

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

What Secret the Bisection Method Hides?
by

Namir Clement Shammas

Introduction

Over the past few years I have modified the simple root-seeking Bisection Method

to enhance it. I obtained good results by adding more steps to that classic algorithm.

Recently, I decided to give it another go at it using a different approach. The core

equation used for updating the guess for the root of f(x)=0, given a root-bracketing

interval [A, B] is:

 C = (A + B) / 2 (1)

The value of C replaces A if f(C) and f(A) have the same sign. Otherwise, C replaces

B. Equation 1 allows the algorithm to reduce the root-bracketing interval by half for

each iteration. The Bisection Method is one of the few root-seeking algorithms

where you can calculate ahead the number of iterations required to refine the guess

for the root given the initial root-bracketing interval and the solution tolerance value.

My first attempt was very naïve, and frankly, lacked planning—simply replace the

integer 2 with the golden ratio, 1.618033989, and see what happens. The results were

terrible! The new algorithm that used the golden ratio diverged! I continued my naïve

thinking by replacing the golden ratio with simpler numbers like 1.5 and 1.75, as if

that would rectify the problem! The results were just as disappointing.

I almost gave up on the attempt to improve the Bisection Method until I realized that

equation 1 is really:

 C = (1 · A + 1 · B) / (1 + 1) (1b)

A more general version of equation 1b is:

 C = (w1 · A + w2 · B) / (w1 + w2) (2)

Setting both weights w1 and w2 to 1 yields equations 1 and 1b. This makes sense

because as the bisection iterations progress, A and B approach and surround the true

value of the root ρ. This calculus limit turns equation 1 into:

What Secret the Bisection Method Hides? 2

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

 lim
𝐴,𝐵→ρ

𝐶 = (ρ + ρ) / 2

= 2 ρ / 2

= ρ (3)

Which allows the value in C to also diverge towards the true value of the root. In

addition, it became clear that replacing 2 with any other value causes C to diverge

from the root! You can draw the same conclusion if you replace the variables A and

B with ρ using equation 2:

 lim
𝐴,𝐵→ρ

𝐶 = (w1 ρ + w2 ρ) / (w1 + w2)

 = (w1 + w2) ρ / (w1 + w2)

 = ρ (4)

The question becomes how can I use the golden ratio with equation 2? We start with

the premise that:

 Phi = w1 + w2 = 1.618033989 (5)

How do we split the golden ratio, Phi, among the two weights in equation 5? There

are two general approaches:

• Manual splitting by selecting one weight, say w1, and calculating the other as

w2 = Phi – w1.

• Calculating one of the weights using the absolute function values at A and B

and the value of Phi. The other weight is calculated using equation 5.

Let me focus on the first approach for splitting the sum of weights. I chose a simple

scheme to use when the values of the weights w1 and w2 are not both equal to 1:

If |f(A)| < |f(B)| then

C = (A + (Phi - 1) * B) / Phi

Else

 C = (B + (Phi - 1) * A) / Phi

End If

Listing 1. The If statement that needs to be included in modifying the Bisection

Method when weights w1 and w2 are not both equal to 1.

What Secret the Bisection Method Hides? 3

Copyright © 2018 by Namir Clement Shammas Version 1.0.0



 Throughout this paper, I use Phi to be more than just the golden

ratio. I use it to represent the sum of the weights w1 and w2 that

appear in equation 2.

This means that I assign 1 to the weight associated with the interval end having the

smallest absolute function. Consequently, I assign the value Phi–1 to the weight

associated with the other interval end. In the case of using the golden ratio, one

weight is 1 and the other is 0.618033989. Such a partition assigns the higher weight

of 1 to the advantageous interval end. Likewise, the partition assigns a smaller

weight (that is, a number smaller than 1) to the disadvantageous interval end. Of

course, there is virtually an infinite number of ways to split the golden ration into

two unequal positive numbers!

Testing with the Golden Ratio

I compared using classical Bisection methods with the golden ratio variant using two

functions—one with three roots and the other with a single root. Table 1 shows the

results and specifies the initial range [A, B] and the tolerance used.

Equation A B Tolerance Iterations

w/Bisection

Iterations

w/Golden

Ratio

exp(x)–3*x^2 3 7 1e–8 29 23

 3 4 1e–8 28 22

 –3 0 1e–8 29 23

 –1 0 1e–8 28 21

ln(100)–x 0 5 1e–8 28 23

 2 5 1e–8 29 22

 4 5 1e–8 27 22

Table 1. Results comparing the Bisection Methods with the variant that uses the

golden ratio.

Table 1 shows very encouraging results with the golden ratio variant requiring fewer

iterations than the classical Bisection Method in every test.

What Secret the Bisection Method Hides? 4

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Can We Expand on the Concept?

We can certainly expand on the above concept. For example, we can set w1 + w2 to

4, and then split the weights into 1 and 3, or better yet, into 1.5 and 2.5. I can also

set these sums to 10 and split them into 6 and 4, or 6.5 and 3.5, and so on. I can even

set the sum of weights to 1000, and split them into all sorts of combinations, such as

600 and 400, 650 and 350, 700 and 300, and so on. How we split the sum of the two

weights is going to influence the speed of conversion. This influence is due to the

relative values of weights that determines how strongly we favor the better interval

end for each iteration.

I thought about replacing the golden ratio with other numbers other than 2. The first

set included numbers smaller than 2 like √2, 1.25, 1.2, 1.15, and 1.1. In the second

category I chose numbers greater than 2 like ln(10), π, and ln(100). Both sets yield

algorithm variants that converge to the root faster than the classical Bisection

Method! When working with the first set of √2, 1.25, 1.2, 1.15, and 1.1, I split each

of these values into 1 and the remaining fractional value.

The function f(x)=exp(x)–3*x^2 has roots at –0.4590, 0.9100, and 3.7331. It has a

maximum at x= 0.2045 and a minimum at x= 2.8331.

Table 2 shows the number of iterations for various sums of weights for the initial

root-bracketing interval of [3, 7]. Figure 1 shows the plots for the results in Table 2.

W1 + W2 Iterations

1.1 24

1.15 23

1.2 23

1.25 21

1.414213562 21

1.618033989 23

2 29

2.302585093 26

3.141592654 22

4.605170186 21

Table 2. Results for f(x)=exp(x)–3*x^2 for [3, 7] and tolerance of 1e–8.

What Secret the Bisection Method Hides? 5

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Figure 1. Results for f(x)=exp(x)–3*x^2 for [3, 7] and tolerance of 1e–8.

Table 2 and Figure 1 indicate that the classical Bisection method can easily

experience faster convergence when the denominator 2 in equation 1 is replaced by

weights whose sum is less than 2 or greater than 2, so long these weights obey

equation 2 and the implementation of the algorithm uses the If statement appearing

in Listing 1.

Let’s look at how a shorter root-bracketing interval, say [3, 4], affects the number of

iterations for the various weights.

Table 3 shows the number of iterations for various sums of weights. Figure 2 shows

the plots for the results in Table 3.

W1 + W2 Iterations

1.1 29

1.15 26

1.2 26

1.25 22

1.414213562 23

1.618033989 22

2 28

20

21

22

23

24

25

26

27

28

29

30

1 1.5 2 2.5 3 3.5 4 4.5 5

Iters

What Secret the Bisection Method Hides? 6

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

W1 + W2 Iterations

2.302585093 23

3.141592654 22

4.605170186 21

Table 3. Results for f(x)=exp(x)–3*x^2 for [3, 4] and tolerance of 1e–8.

Figure 2. Results for f(x)=exp(x)–3*x^2 for [3, 4] and tolerance of 1e–8.

Table 3 and Figure 2 indicate that the classical Bisection method can easily

experience faster convergence when the denominator 2 in equation 1 is replaced by

weights whose sum is less than 2 (except for 1.1) or greater than 2, so long these

weights obey equation 2 and the implementation of the algorithm uses the If

statement appearing in Listing 1.

Let’s look at a different root-bracketing interval, say [–3, 0], and how it affects the

number of iterations for the various weights.

Table 4 shows the number of iterations for various sums of weights. Figure 3 shows

the plots for the results in Table 4.

W1 + W2 Iterations

1.1 21

20

21

22

23

24

25

26

27

28

29

30

1 1.5 2 2.5 3 3.5 4 4.5 5

Iters

What Secret the Bisection Method Hides? 7

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

W1 + W2 Iterations

1.15 24

1.2 25

1.25 20

1.414213562 21

1.618033989 23

2 29

2.302585093 25

3.141592654 22

4.605170186 24

Table 4. Results for f(x)=exp(x)–3*x^2 for [–3, 0] and tolerance of 1e–8.

Figure 3. Results for f(x)=exp(x)–3*x^2 for [–3, 0] and tolerance of 1e–8.

Table 4 and Figure 3 indicate that the classical Bisection method can easily

experience faster convergence when the denominator 2 in equation 1 is replaced by

weights whose sum is less than 2 or greater than 2, so long these weights obey

equation 2 and the implementation of the algorithm uses the If statement appearing

in Listing 1.

Let’s narrow the last root-bracketing interval to [–1, 0] and see how that affects the

number of iterations for the various weights.

19

21

23

25

27

29

31

1 1.5 2 2.5 3 3.5 4 4.5 5

Iters

What Secret the Bisection Method Hides? 8

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Table 5 shows the number of iterations for various sums of weights. Figure 4 shows

the plots for the results in Table 5.

W1 + W2 Iterations

1.1 40

1.15 27

1.2 22

1.25 19

1.414213562 21

1.618033989 21

2 28

2.302585093 24

3.141592654 20

4.605170186 23

Table 5. Results for f(x)=exp(x)–3*x^2 for [–1, 0] and tolerance of 1e–8.

Figure 4. Results for f(x)=exp(x)–3*x^2 for [–1, 0] and tolerance of 1e–8.

Table 5 and Figure 4 indicate that the classical Bisection method can easily

experience faster convergence when the denominator 2 in equation 1 is replaced by

weights whose sum is less than 2 (except 1.1) or greater than 2, so long these weights

16

21

26

31

36

41

46

1 1.5 2 2.5 3 3.5 4 4.5 5

Iters

What Secret the Bisection Method Hides? 9

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

obey equation 2 and the implementation of the algorithm uses the If statement

appearing in Listing 1.

The conclusions we can draw that for the function f(x)=exp(x)–3*x^2, the weights

that sum up to √2 and π give optimum number of iterations for the sum of weights

that are below 2 and above 2, respectively. The extreme sum of weights of 1.1 does

not seem to reliably yield fewer iterations than the classical Bisection Method.

Testing Another Function

As stated earlier the function f(x)=exp(x)–3*x^2 has roots near –0.4590, 0.9100, and

3.7331. It has a maximum and a minimum. I will use a simpler linear function

f(x)=ln(100)–x with a single root at 4.60517.

Let’s start with root-bracketing interval of [0, 5], and how it affects the number of

iterations for the various weights.

Table 6 shows the number of iterations for various sums of weights. Figure 5 shows

the plots for the results in Table 6.

W1 + W2 Iterations

1.1 31

1.15 24

1.2 28

1.25 26

1.414213562 20

1.618033989 23

2 29

2.302585093 25

3.141592654 21

4.605170186 22

Table 6. Results for f(x)=ln(100)–x for [0, 5] and tolerance of 1e–8.

What Secret the Bisection Method Hides? 10

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Figure 5. Results for f(x)=ln(100)–x for [0, 5] and tolerance of 1e–8..

Table 6 and Figure 5 indicate that the classical Bisection Method can easily

experience faster convergence when the denominator 2 in equation 1 is replaced by

weights whose sum is less than 2 (except 1.1) or greater than 2, so long these weights

obey equation 2 and the implementation of the algorithm uses the If statement

appearing in Listing 1.

Let’s narrow the root-bracketing interval to [2, 5], and observe its effect on the

number of iterations for the various weights.

Table 7 shows the number of iterations for various sums of weights. Figure 6 shows

the plots for the results in Table 7.

W1 + W2 Iterations

1.1 36

1.15 24

1.2 22

1.25 21

1.414213562 21

1.618033989 22

2 29

2.302585093 24

18

20

22

24

26

28

30

32

1 1.5 2 2.5 3 3.5 4 4.5 5

Iters

What Secret the Bisection Method Hides? 11

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

W1 + W2 Iterations

3.141592654 23

4.605170186 23

Table 7. Results for f(x)=ln(100)–x for [2, 5] and tolerance of 1e–8.

Figure 6. Results for f(x)=ln(100)–x for [2, 5] and tolerance of 1e–8..

Table 7 and Figure 6 indicate that the classical Bisection method can easily

experience faster convergence when the denominator 2 in equation 1 is replaced by

weights whose sum is less than 2 (except 1.1) or greater than 2, so long these weights

obey equation 2 and the implementation of the algorithm uses the If statement

appearing in Listing 1.

Let’s further narrow the root-bracketing interval to [4, 5], and examine its effect on

the number of iterations for the various weights.

Table 8 shows the number of iterations for various sums of weights. Figure 7 shows

the plots for the results in Table 8.

W1 + W2 Iterations

1.1 25

1.15 31

18

20

22

24

26

28

30

32

34

36

38

1 1.5 2 2.5 3 3.5 4 4.5 5

Iters

What Secret the Bisection Method Hides? 12

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

W1 + W2 Iterations

1.2 22

1.25 25

1.414213562 19

1.618033989 22

2 27

2.302585093 24

3.141592654 23

4.605170186 18

Table 8. Results for f(x)=ln(100)–x for [4, 5] and tolerance of 1e–8.

Figure 7. Results for f(x)=ln(100)–x for [4, 5] and tolerance of 1e–8..

Table 8 and Figure 7 indicate that the classical Bisection Method can easily

experience faster convergence when the denominator 2 in equation 1 is replaced by

weights whose sum is less than 2 (except 1.15) or greater than 2, so long these

weights obey equation 2 and the implementation of the algorithm uses the If

statement appearing in Listing 1.

18

20

22

24

26

28

30

32

1 1.5 2 2.5 3 3.5 4 4.5 5

Iters

What Secret the Bisection Method Hides? 13

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Conclusion So Far!

Moving from the classic Bisection Method and how it uses equation 1 to refine the

guess for the root to using equation 2 with the addition of the code snippet in Listing

1 pays off in reducing the number of iterations. The pseudo code for the first variant

of the Bisection Method is:

Given:

• Function f(x) = 0.

• Root-bracketing interval [A, B].

• Tolerance for the refined guess Toler

• Sum of weights Phi = w1 + w2 and Phi < 2.

 Fa = f(A)

 Fb = f(B)

 Do

 If Abs(Fa) < Abs(Fb) Then

 C = (A + (Phi - 1) * B) / Phi

 Else

 C = (B + (Phi - 1) * A) / Phi

 End If

 Fc = f(C)

 If Fa * Fc > 0 Then (

 A = C

 Fa = Fc

 Else

 B = C

 Fb = Fc

 End If

 Loop Until Abs(A - B) < Toler

Listing 2. The first general variant of the Bisection Method.

The If statement in Listing 1 empowers the various weights (whose sum is not equal

to 2) to reduce the number of iterations. Figures 1 to 7, show that there is a general

trend favoring the sum of weights at √2 and π. The curves in these figures are similar

but do not follow a strictly identical patterns. The figures are influence by the client

function, the width and values if initial root-bracketing interval, and the tolerance

value. While these factors are somewhat few, there is much complexity associated

with them to enable me to derive an equation predicting the number of iterations

What Secret the Bisection Method Hides? 14

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Tweaking the Bisection when the Sum of Weights is 2

This part of this study looks back at the classic Bisection Method and inquires about

tweaking the sum of the weights w1 and w2 is 2 but the weights are not equal to 1.

The pseudo-code for this second general variation for the Bisection Method is:

Given:

• Function f(x) = 0.

• Root-bracketing interval [A, B].

• Tolerance for the refined guess Toler

• 0 < Phi < 1.

 Fa = f(A)

 Fb = f(B)

 Do

 If Abs(Fa) < Abs(Fb) Then

 C = (Phi * B + (2 - Phi) * A) / 2

 Else

 C = (Phi * A + (2 - Phi) * B) / 2

 End If

 Fc = f(C)

 If Fa * Fc > 0 Then

 A = C

 Fa = Fc

 Else

 B = C

 Fb = Fc

 End If

 Loop Until Abs(A - B) < Toler

Listing 3. The second general variant for the Bisection Method.

The code in Listing 3 shows that the value of the inferior end point is multiplied by

Phi (which is less than 1) while the superior end point is multiplied by (2 – Phi)

setting its value above 1.

I decided to vary the values of Phi between 0.1 and 0.9 in increments of 0.1. I want

to answer the following questions:

1. Does any value of Phi < 2 yield few iterations?

2. If (1) is true, what are the best values of Phi?

3. Is there a systematic pattern that appears regardless of the size and values of

the root-bracketing interval and of the targeted function?

What Secret the Bisection Method Hides? 15

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Let’s start with f(x)=exp(x)–3*x^2 and the initial root-bracketing interval of [3, 7],

with the tolerance value of 1e–8.

Table 9 shows the number of iterations for various sums of weights. Figure 8 shows

the plots for the results in Table 9.

W1 + W2 Iterations

0.1 33

0.2 24

0.3 18

0.4 21

0.5 24

0.6 22

0.7 22

0.8 24

0.9 26

1 (classic Bisection) 29

Table 9. Results for f(x)=exp(x)–3*x^2 for [3, 7] and tolerance of 1e–8.

Figure 8. Results for f(x)=exp(x)–3*x^2 for [3, 7] and tolerance of 1e–8.

15

17

19

21

23

25

27

29

31

33

35

0 0.2 0.4 0.6 0.8 1 1.2

Iters

What Secret the Bisection Method Hides? 16

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Table 9 and Figure 8 indicate that the classical Bisection Method can easily

experience faster convergence for values of Phi between 0.2 and 0.9. The value of

Phi=0.3 is the optimum values in Figure 8.

Let’s shorten the initial root-bracketing interval to [3, 4] and see how that affects the

number of iterations and their distribution.

Table 10 shows the number of iterations for various sums of weights. Figure 9 shows

the plots for the results in Table 10.

W1 + W2 Iterations

0.1 23

0.2 29

0.3 27

0.4 21

0.5 23

0.6 20

0.7 20

0.8 22

0.9 24

1 (classic Bisection) 27

Table 10. Results for f(x)=exp(x)–3*x^2 for [3, 4] and tolerance of 1e–8.

What Secret the Bisection Method Hides? 17

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Figure 9. Results for f(x)=exp(x)–3*x^2 for [3, 4] and tolerance of 1e–8.

Table 10 and Figure 9 indicate that the classical Bisection Method can still easily

experience faster convergence for values of Phi other than 0.2. The value of Phi=0.6

and 0.7 are the optimum values in Figure 9. Notice that the distribution of the

iteration numbers is different in Figures 8 and 9, with the optimum Phi shifting from

below 0.5 to above it!

Now we look at f(x)=ln(100)–x with an initial root-bracketing interval of [0, 5].

Table 11 shows the number of iterations for various sums of weights. Figure 10

shows the plots for the results in Table 11.

W1 + W2 Iterations

0.1 58

0.2 24

0.3 23

0.4 26

0.5 21

0.6 22

0.7 24

18

20

22

24

26

28

30

0 0.2 0.4 0.6 0.8 1 1.2

Iters

What Secret the Bisection Method Hides? 18

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

W1 + W2 Iterations

0.8 23

0.9 26

1 (classic Bisection) 29

Table 11. Results for f(x)=ln(100)–x for [0, 5] and tolerance of 1e–8.

Figure 10. Results for f(x)=ln(100)–x for [0, 5] and tolerance of 1e–8.

Table 11 and Figure 10 indicate that the classical Bisection Method can still easily

experience faster convergence for values of Phi other than 0.1. The value of Phi=0.5

is the optimum values in Figure 9.

Now we shorten the initial root-bracketing interval to [4, 5] and examine its effect

on the number of iterations.

Table 12 shows the number of iterations for various sums of weights. Figure 11

shows the plots for the results in Table 12.

W1 + W2 Iterations

0.1 34

0.2 29

0.3 25

20

25

30

35

40

45

50

55

60

0 0.2 0.4 0.6 0.8 1 1.2

Iters

What Secret the Bisection Method Hides? 19

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

W1 + W2 Iterations

0.4 25

0.5 19

0.6 19

0.7 22

0.8 22

0.9 24

1 (classic Bisection) 27

Table 12. Results for f(x)=ln(100)–x for [4, 5] and tolerance of 1e–8.

Figure 11. Results for f(x)=ln(100)–x for [4, 5] and tolerance of 1e–8.

Table 12 and Figure 11 indicate that the classical Bisection Method can still easily

experience faster convergence for values of Phi other than 0.1. The values of Phi=0.5

and 0.6 are the optimum values in Figure 11. Again, we see that narrowing the root-

bracketing interval yields a different distribution for the number of iterations.

The conclusion that we can draw is that there is no firm value of Phi that is minimum.

Taking the value of 0.55 (as an average of 0.5 and 0.6) is a good guess.

18

20

22

24

26

28

30

32

34

36

0 0.2 0.4 0.6 0.8 1 1.2

Iters

What Secret the Bisection Method Hides? 20

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Dynamic Split of Sum of Weights

Now we come back to the other method for splitting the sum of weights—the one

that uses the absolute function values at A and B. The new scheme replaces the If

statement in Listing 1 with the one in Listing 4.

If AbsFa < AbsFb Then

 w = AbsFb / (AbsFa + AbsFb)

 C = (w * B + (Phi - w) * A) / Phi

Else

 w = AbsFa / (AbsFa + AbsFb)

 C = (w * A + (Phi - w) * B) / Phi

End If

Listing 4. The scheme to split the sum of weights using relative function values.

Listing 4 shows that the code calculates the variable w as a ratio between an absolute

function value for A or B with the sum of the absolute function values at A and B.

The If statement calculates C using the values of A, B, w, and Phi. The last two

entities calculate the values of the weights w1 and w2 (as they appear in equation 2).

One big feature of this scheme is that it implements dynamic splitting of the sum of

weights. Each iteration will calculate a different value for w, which also makes Phi

– w a variable entity.

Let’s look at how using the dynamic splitting scheme in Listing 4 works with finding

the root for f(x)=exp(x)–3*x^2 for interval to [3, 4]. Table 13 shows the number of

iterations for various sums of weights. Figure 12 shows the plots for the results in

Table 12.

W1 + W2 Iterations

1.2 53

1.25 53

1.414213562 44

1.618033989 37

2 32

2.302585093 29

3.141592654 25

4.605170186 26

5 30

Table 13. Results for f(x)=exp(x)–*x^2 for [3, 4] and tolerance of 1e–8.

What Secret the Bisection Method Hides? 21

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Figure 12. Results for f(x)=exp(x)–*x^2 for [3, 4] and tolerance of 1e–8..

Table 13 and Figure 12 indicate that using the scheme in Listing 5 produces different

convergence dynamics that in the previous parts of this study. Only the values of Phi

above 2 yields fewer iterations than the classical Bisection Method. Notice that there

seems to be an upward trend that yields more iterations at Phi=6 or above (I have

tested these values separately).

Now we look at f(x)=ln(100)–x with an initial root-bracketing interval of [4, 5].

Table 14 shows the number of iterations for various sums of weights. Figure 13

shows the plots for the results in Table 14.

W1 + W2 Iterations

1.2 52

1.25 37

1.414213562 38

1.618033989 31

2 29

2.302585093 29

3.141592654 23

4.605170186 20

5 27

Table 14. Results for f(x)=ln(100)–x for [4, 5] and tolerance of 1e–8.

20

25

30

35

40

45

50

55

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Iters

What Secret the Bisection Method Hides? 22

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Figure 13. Results for f(x)=ln(100)–x for [4, 5] and tolerance of 1e–8.

Table 14 and Figure 13 indicate that the values for Phi above pi converge faster than

the classical Bisection method. However, like in Figure 12, this reduction exists for

a limited range. The number of iterations increases as Phi exceeds 5.

Using the dynamic splitting scheme in Listing 4 yields limited improvements for the

number of iteration. This scheme is not as good as the manual weight selection

schemes presented earlier.

General Conclusion

This study looks at using equation 2 to modify the classic Bisection Method. The

denominator 2 in equation 1 can be regarded as a sum of weights used to multiply

the ends, [A, B], of the root-bracketing interval. The study looked at replacing 2 with

other numbers as well as using it. Another design factor in fine-tuning the Bisection

Method is whether to manually select the two weights w1 and w2 or to calculate them

using the absolute function values of A and B. Calculating the weight turned out to

offer limited improvements for the Bisection Method. Simple manual selection of

the weights, whose sums differ from 2, yielded good reduction in the number of

iterations.

Taking equation 2 in consideration, it seems that using the sum of weights w1 and

w2 to be either √2 or π, together with the code in Listing 2 yields the most reduction

in the number of iterations, compared with the classical Bisection Method.

0

10

20

30

40

50

60

0 1 2 3 4 5 6

Iters

What Secret the Bisection Method Hides? 23

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Looking at equation 2 again:

C = (w1 A + w2 B) / (w1 + w2)

You can select any positive sum of weights and split that sum into reasonable

proportional values for w1 and w2. The value of these weights influences the rate of

conversion to the root.

Listing 5 shows the general pseudo-code for the modified Bisection Method:

Given:

• Function f(x) = 0.

• Root-bracketing interval [A, B].

• Tolerance for the refined guess Toler

• Weights w1 and w2, such that w1 + w2 >= 2 and w1 > w2.

 Fa = f(A)

 Fb = f(B)

 Do

 If Abs(Fa) < Abs(Fb) Then

 C = (w1 * A + w2 * B) / (w1 + w2)

 Else

 C = (w1 * B + w2 * A) / (w1 + w2)

 End If

 Fc = f(C)

 If Fa * Fc > 0 Then

 A = C

 Fa = Fc

 Else

 B = C

 Fb = Fc

 End If

 Loop Until Abs(A - B) < Toler

Listing 5. The general version of the fixed weights split Bisection Method

modification.

The classical Bisection Method is the simplest form of root-bracketing algorithm

that reduces the root-bracketing interval by half for each iteration. This study has

show that equation 1 (used in the classical Bisection Method) can be replaced by a

more general version in equation 2. The improvement reduces the number of

iterations using special weights w1 and w2 that are multiplied by the root-bracketing

What Secret the Bisection Method Hides? 24

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

interval ends. It also requires including an If-Else statement (like in Listing 5) to

effectively use these weights.

This study merely opens the door for a more thorough study of equation 2 taking in

consideration a vast number of combination of weights w1 and w2.

What Secret the Bisection Method Hides? 25

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Document History

Date Version Comment

May 30, 2018 1.0.0 Initial release.

