
Best Heteronomial Model Selection` 1

Copyright © 2025 by Namir Clement Shammas

Best Heteronomial Model Selection
by

Namir Clement Shammas

Introduction
Polynomials are popular constructs in math, calculus and regression analysis.

Other popular constructs in regression analysis belong to multiple linear(ized)

models. A simple example of a multiple regression model with two independent

variables is:

Y = a + b1*X1 + b2*X2 (1)

I will call the above multivariable model a linear heteronomial. It is linear because

all the variables are in linear form. A simple example of a nonlinear heteronomial

is:

Y = a + b1/X1 + b2*X2
2 (2)

The above model has a linear value for the dependent variable, raises variable X1

to the power of -1, and raises variable X2 to power 2. A multivariable equation

becomes a nonlinear heteronomial when at least one variable is nonlinear.

The general form of heteronomials is:

𝑌𝑦𝑝= a + b1*𝑋1
𝑝𝑥1

 + b2*𝑋2
𝑝𝑥2

 + … + 𝑋𝑛
𝑝𝑥𝑛

 (3)

The above heteronomial shows that each variable in the model can have its own

power. The powers can be negative, zero (special code for using the function

ln(x)), and positive. The non-zero powers can be integers or floating-point

numbers. Using floating point negative and zero powers requires the data to be

positive.

I can generalize equation (3) further by using the following form:

𝑓(𝑌, 𝑦𝑝)= a + b1*𝑓(𝑋1, 𝑝𝑥1)+ b2*𝑓(𝑋2, 𝑝𝑥2) + ⋯ + bn*𝑓(𝑋𝑛, 𝑝𝑥𝑛) (4)

Where f(x,p) = x^p when p ≠ 0

 = ln(x) when p = 0 (5)

Best Heteronomial Model Selection` 2

Copyright © 2025 by Namir Clement Shammas

This study will focus on heteronomials with the above kind of power

transformations. Using other functions like trigonometric and hyperbolic functions

requires a more elaborate power-coding scheme to map special powers to special

functions. The power management scheme uses distinct initial powers, power

increments, and final powers for each variable.



 Please note that the total number of models tested is the product of the

total number of transformations for each variable. The total number of

models can easily increase to very high values with the increase in the

number of transformations for each variable.

This study looks at the selection of the best heteronomials models using Python’s

xlwings package and Excel data files. The Python code will replace Excel VBA,

since the xlwings package works well with opened Excel files. This feature allows

you to see changes in the Excel sheets instantly.

The Case of One Independent Variable
Let’s start with the simple case of the regression model shown next:

𝑌𝑦𝑝= a + b1*𝑋1
𝑝𝑥1

 (6)

The Excel workbook bestmlr1.xlsx is the one I use to handle modeling with

equation (6). The workbook has the following sheets:

• The Data sheet has the following columns (see Figure 1):

o Column A contains the values for the dependent variable Y. The

column has the header Y in the first row.

o Column B contains the values for the dependent variable X. The

column has the header X in the first row.

o Column C contains the values for the transformed values of variable

Y. The column has the header Yt in the first row.

o Column D contains the values for the transformed values of variable

X. The column has the header Xt in the first row.

• The Transf sheet contains the information for the transformation ranges. It

has the following columns (see Figure 2):

Best Heteronomial Model Selection` 3

Copyright © 2025 by Namir Clement Shammas

o Column A has the header Y in row 1. Rows 2, 3, and 4 contain the

values for the initial power, power increment, and final power used

with variable Y.

o Column B has the header X in row 1. Rows 2, 3, and 4 contain the

values for the initial power, power increment, and final power used

with variable X. In the case of more than one independent variables,

columns C and beyond store the data for initial powers, power

increments, and final powers.

o Column C has the header Min Adj R-sqr in row 1. Row 2 contains

the minimum value for the adjusted R-square statistic used to qualify

a model to be listed in the sheet List.

• Sheet Results displays the results for the best model (see Figure 3). They

include:

o The adjusted R-square value in cell B1.

o The F statistic in cell B2.

o The p-Value for the F statistic in cell B3.

o The AIC statistic in cell B4.

o Cells C2 to F2 display the powers of Y and X for the best

heteronomial.

o Cells C3 to F3 display the intercept and slope for the best

heteronomial.

o Cells C4 to F4 display the intercept and slope for the best

heteronomial.

o Cells C5 to F5 display the p-Values for the intercept and slope for the

best heteronomial.

• Sheet List displays the list of models with qualifying adjusted R-square

values (as appearing in cell C2 of the Transf sheet). Figure 4 shows a partial

view of the results AFTER I sorted the columns using Excel’s sorting

feature. The sheet has the following columns:

o Column A displays the values for the adjusted R-square statistic.

o Column B displays the values for powers of variable Y.

o Column C displays the values for powers of variable X.

o Column D displays the values for the intercepts.

o Column E displays the values for the slopes.

• Sheets Yt and Xt contain columns of the transformed values of variables Y

and X, respectively. I regard these sheets as scratch sheets that store

intermediate data. The program calculates the various transformed values

Best Heteronomial Model Selection` 4

Copyright © 2025 by Namir Clement Shammas

once, stores them in these sheets, and then copy them to the Data sheet as

needed. This scheme reduces computational time.

Best Heteronomial Model Selection` 5

Copyright © 2025 by Namir Clement Shammas

Y X Yt Xt

4 1 64 1

4.5 2 91.125 8

4.666666667 3 101.6296297 27

4.75 4 107.171875 64

4.8 5 110.592 125

4.833333333 6 112.912037 216

4.857142857 7 114.5889213 343

4.875 8 115.8574219 512

4.888888889 9 116.8504801 729

4.9 10 117.649 1000

Figure 1. The Data sheet.

Y X Min Adj R-sqr
-3 -3 0.9
1 1
3 3

Figure 2. The Transf sheet.

Figure 3. The Results sheet.

Adj R-square 1 Y Intercept X1
F 2.21213E+19 Power 1 -1
F p-Value 4.67712E-75 Coefficients 5 -1
AIC -418.9667693 p-Value 6.90693E-84 4.67712E-75

Best Heteronomial Model Selection` 6

Copyright © 2025 by Namir Clement Shammas

Adj R-square Xpwr Ypwr Intercept X
1 1 -1 5 -1

0.999146471 0 -1 1.6132 -0.22480928
0.999130038 2 -1 24.84 -8.92523625
0.996639413 -1 -1 0.1983 0.050704654
0.996508694 3 -1 122.79 -59.9354914
0.992587756 -2 -1 0.0389 0.022947776
0.987134043 -3 -1 0.0075 0.007814982

Figure 4. The List sheet (partial view).

Here is the Python code for the calculations that determine the heteronomial

model. Makes sure that you have already installed the Python packages

statsmodels, pandas, xlwings, numpy, and pyttsx3.

import statsmodels.api as sm

import pandas as pd

import xlwings as xw

import numpy as np

import pyttsx3

def get_column_letter(num):

 letters = ''

 while num:

 mod = (num - 1) % 26

 letters += chr(mod + 65)

 num = (num - 1) // 26

 return ''.join(reversed(letters))

def fx(x,pwr):

 if pwr > 0:

 return x**pwr

 elif pwr < 0:

 return 1/x**abs(pwr)

 else:

 return np.log(x)

def calcColumns(sheet):

 col = 0

 while 1:

 col += 1

 if sheet.range(1,col).value is None:

 break

 return col-1

e = pyttsx3.init()

Best Heteronomial Model Selection` 7

Copyright © 2025 by Namir Clement Shammas

rate = e.getProperty('rate')

e.setProperty('rate', rate-50)

Load your data (replace with your actual data)

wb = xw.Book('bestmlr1.xlsx')

sheetData = wb.sheets['Data']

sheetTransf = wb.sheets['Transf']

sheetRes = wb.sheets['Results']

sheetList = wb.sheets['List']

sheetYt = wb.sheets['Yt']

sheetXt = wb.sheets['Xt']

clear sheets

sheetList.range('A2:Z10000').value = ""

sheetYt.range('A1:Z10000').value = ""

sheetXt.range('A1:Z10000').value = ""

row = 1

while 1:

 row += 1

 if sheetData.range(row,1).value is None:

 break

maxrows = row - 1

yPwrs = sheetTransf.range("A2:A4").value

xPwrs = sheetTransf.range("B2:B4").value

minAdjR2 = sheetTransf.range("C2").value

yCols = 0

for yPwr in np.arange(yPwrs[0],yPwrs[2]+yPwrs[1],yPwrs[1]):

 yCols += 1

 for row in range(2,maxrows+1):

 sheetYt.range(row-1,yCols).value = fx(sheetData.range(row,1).value,yPwr)

xCols = 0

for xPwr in np.arange(xPwrs[0],xPwrs[2]+xPwrs[1],xPwrs[1]):

 xCols += 1

 for row in range(2,maxrows+1):

 sheetXt.range(row-1,xCols).value = fx(sheetData.range(row,2).value,xPwr)

bestAdjR2 = 0

gRow = 1

e.say("Initialization Done")

e.runAndWait()

yCols = 0

for yPwr in np.arange(yPwrs[0],yPwrs[2]+yPwrs[1],yPwrs[1]):

 yCols += 1

 s = get_column_letter(yCols)

 s2 = s + "1:" + s + str(maxrows-1)

 Ysr = sheetYt.range(s2)

 Ysr.copy()

 Ydr = sheetData.range("C2")

 Ydr.paste()

 xCols = 0

 for xPwr in np.arange(xPwrs[0],xPwrs[2]+xPwrs[1],xPwrs[1]):

Best Heteronomial Model Selection` 8

Copyright © 2025 by Namir Clement Shammas

 xCols += 1

 s = get_column_letter(xCols)

 s2 = s + "1:" + s + str(maxrows-1)

 Xsr = sheetXt.range(s2)

 Xsr.copy()

 Xdr = sheetData.range("D2")

 Xdr.paste()

 data = sheetData.range((2,3),(maxrows,4)).value

 # Convert data to a pandas DataFrame

 df = pd.DataFrame(data)

 df.columns = ['Yt','Xt']

 # Define dependent and independent variables

 y = df['Yt']

 X = df['Xt']

 # Add a constant to the independent variables (for the intercept term)

 X = sm.add_constant(X)

 # Fit the model

 model = sm.OLS(y, X).fit()

 if model.rsquared_adj > bestAdjR2:

 bestAdjR2 = model.rsquared_adj

 bestYpwr = yPwr

 bestXpwr = xPwr

 bestModel = model

 if model.rsquared_adj >= minAdjR2:

 gRow += 1

 sheetList.range((gRow,1)).value = model.rsquared_adj

 sheetList.range((gRow,2)).value = yPwr

 sheetList.range((gRow,3)).value = xPwr

 sheetList.range((gRow,4)).value= model.params.iloc[0]

 sheetList.range((gRow,5)).value= model.params.iloc[1]

model = bestModel

Print the summary of the best regression results

print(model.summary())

print("Best Y power", bestYpwr)

print("Best X power", bestXpwr)

sheetRes.range("B1").value = model.rsquared_adj

sheetRes.range("B2").value = model.fvalue

sheetRes.range("B3").value = model.f_pvalue

sheetRes.range("B4").value = model.aic

sheetRes.range("D2").value = bestYpwr

sheetRes.range("F2").value = bestXpwr

sheetRes.range("E3").value = model.params.iloc[0]

sheetRes.range("F3").value = model.params.iloc[1]

sheetRes.range("E4").value = model.pvalues.iloc[0]

sheetRes.range("F4").value = model.pvalues.iloc[1]

e.say("Calculations Done")

e.runAndWait()

Best Heteronomial Model Selection` 9

Copyright © 2025 by Namir Clement Shammas

The program performs the following general tasks:

• Initialize the text-to-speech engine.

• Connect Python with the Excel workbook using the xw.Book() function.

• Initialize the variables that access the different sheets in the Excel

workbook.

• Clear sheets List, Yt, and Xt.

• Determine the maximum rows in sheet Data.

• Obtain and store the ranges of transformations for the variables X and Y.

Also obtain the minimal adjusted R-square value.

• Populate the various columns of sheets Xt and Yt with the values of

variables X and Y with different powers.

• Start the main process using two nested loops to access the transformed

values of Y and X and copy them in sheet Data.

• Create the data frame object df that maps the cells in sheet Data for the

transformed values of variables X and Y.

• Select the variables for the multiple linearized regression. The column

labeled Yt supply the transformed values of variable Y. The columns labeled

Xt supplies the transformed values of variable X. In the case of using two

independent variables, the labels for X are Xt1, and Xt2. In the case of using

three independent variables, the labels for X are Xt1, Xt2, and Xt3.

• Add a constant term to the regression model.

• Call sm.OLS(y, X).fit to obtain a multiple regression model that is stored in

object model.

• Determine if the new model object has a better adjusted R-square value than

the one store in variable bestAdjR2. If this condition is true, the program

stores the adjusted R-square value, the powers for X and Y, and the model

object.

• Determine if the new model object has an adjusted R-square value that is

greater or equal to the one store in variable minAdjR2. If this condition is

true, the program lists the current model results in the next available row in

sheet List. You should manually sort the results based on the values of the

adjusted R-square values.

• Display on the console the summary of the best regression model object

along with the best powers.

• Populate sheet Results with the results of the best regression model.

• Announce the end of the computations.

Best Heteronomial Model Selection` 10

Copyright © 2025 by Namir Clement Shammas

Open the Excel file bestmlr1.xlsx before you run the Python program. If needed,

enter or edit the data in sheets Data and Transf. As the Python program runs you

can see changes to the cells in sheets like Data and List. When the Python

program ends, it displays results in the console and in sheets List and Results.

The Python code contains the function fx that transforms the value of a variable

using a power value. The current implementation of function fx handles negative,

zero, and positive powers. Notice that the power zero causes function fx to return

the natural logarithm value of x.



 Should you desire to use other functions for transformations, then you need

to code function fx to detect the supplied power values and use them to

evaluate a special function. For example, if you are using the range of -3 to 3

in increments of 1 for regular powers, you can use the powers of 4 and 5 to

evaluate, for example, the sine and cosine functions. The function fx should

use separate if statements to detect the value of 4 and 5 and return sin(x) and

cos(x), respectively. The code for function fx would look like:

def fx(x,pwr):

 if pwr == 4:

 return np.sin(x)

 if pwr == 5:

 return np.cos(x)

 if pwr > 0:

 return x**pwr

 elif pwr < 0:

 return 1/x**abs(pwr)

 else:

 return np.log(x)

As show above, function fx should detect the special coded powers first.

Models for Heteronomials of Order Two and Up
The study includes versions of bestmlr1 that work with heteronomials of orders 2

to 5. The code for these functions is very similar to that of bestmlr1. Of course,

since these programs have two or more independent variables, the code has

expanded parts to handle the additional variables. For example, the Python code

uses three or more nested for loops to prepare the data for regression calculations.

Likewise, the Excel workbooks have additional columns in the sheets mentioned

Best Heteronomial Model Selection` 11

Copyright © 2025 by Namir Clement Shammas

earlier to accommodate the additional variables. The workbooks have additional

scratch sheets to store transformed data.

You will find the code for the various versions of the bestmlr programs and Excel

files in the ZIP file for this project. The ZIP file contains the PDF version of the

document, and the files listed in the next table.

Number of Independent Variables Files

1 bestmlr1.xlsx

bestmlr1.py

2 bestmlr2.xlsx

bestmlr2.py

3 bestmlr3.xlsx

bestmlr3.py

4 bestmlr4.xlsx

bestmlr4.py

5 bestmlr5.xlsx

bestmlr5.py

