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Introduction 
Polynomials are very popular constructs for math, calculus, and curve fitting. A 

polynomial has one or more terms with the independent variable raised to an 

integer power. Parallel to polynomials are loosely named multivariable constructs 

that involve different independent variables. I will rename these constructs 

heteronomials. An example of a simple linear heteronomial, often used in simple 

multiple linear regression is: 
 

Y = a + b1X1 + b2X2         (1) 
 

Where X1 and X2 are the independent variables and Y is the dependent variable. I 

call equation (1) a linear heteronomial because it uses linear values of the 

variables. A simple example of a non-linear heteronomial is: 
 

Y = a + b1/X1 + b2X2
2         (2) 
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In equation (2) the variable X1 is raised to the power -1 and the variable X2 is 

raised to the power 2.  More advanced heteronomials involve more independent 

variables and different powers like –3, –2, 3, 0.5, 1.5, and so on. The power zero is 

translated to the ln(x) function. The other powers are taken at face value. In this 

study, I limit the powers of the heteronomials to negative, zero (to use function 

ln(x)), and positive numbers (both integers and reals). The general form of a 

heteronomial is: 
 

Ypy = a + b1 𝑋1
𝑝𝑥1

 + b2𝑋2
𝑝𝑥2

  + … + bn𝑋𝑛
𝑝𝑥𝑛

      (3) 
 

Notice that each variable in equation (3) can have a non-unity power! 

Partition Regression 
Partitioning the data in a set of training data and one or more sets of testing data 

allows us to test the models derived in the training phase with data the models have 

not yet encountered. This approach allows us to examine the robustness of the 

models. 

 

I will test using the partition approach to perform curve fitting with heteronomials, 

like the ones in equation (1). The general approach uses the following steps: 
 

 

1. Divide the data into bins (or pages). The first bin should be bigger than the 

other bins. I will choose the first bin to be twice as big as the remaining data 

bins. The first bin is the training bin. The other bins are the testing bins. 

2. Determine the set of heteronomial models using the data in the training bin. 

3. Display the results for the best model that employes the training data. 

4. Use the set of models generated in step 2 to calculate the corresponding sets 

of predicted values of the dependent variable in the testing bins.  By 

comparing the original values and the set of predicted ones in each test bin, 

we calculate the adjusted coefficients of determination (adjusted R-square). 

5. Determine for each bin, (that yields the highest values of the adjusted R-

square) of the set of the models obtained in step 2. 

6. Display the results (best powers and adjusted R-square) for each test bin. 

7. Display detailed results for the best fit in the test bins. 

8. Display the results for the model using ALL the data. 
 

There are basically the following results to compare: 
 

1. The best model (using the training bin data) that fits the test bins. 
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2. The best model that uses the training bin. 

3. The best model that uses all the data. 

 

Option 1 has the most weight because it applies the best model from the training 

data to test data it has not seen! Option 3 is the next most important weight, 

because it uses all the data. 

The Basics 
The regression models are built using various powers for each variable. For 

example, in the case of one independent variable, we have: 
 

Ypy = a + b Xpx          (4) 
 

In the case of two and three independent variables, we have: 
 

Ypy = a + b1 𝑋1
𝑝𝑥1

 + b2 𝑋2
𝑝𝑥2

        (5) 

Ypy = a + b1 𝑋1
𝑝𝑥1

 + b2𝑋2
𝑝𝑥2

  + b3𝑋3
𝑝𝑥3

       (6) 
 

And so on. Since we don’t know the powers to best fit predicted values of the 

dependent variable, we need to search each power within a range. The values for 

all the powers used fall in user-defined ranges. The search uses lower and upper 

range limits and search increments specified by the user. These values can be 

negative, zero, and positive. In the case of zero, the code uses function ln(x). The 

models tested comprise of the combination of various powers for each variable. 

For example, using equation (1), we can select the powers 0, 1, and 2 for each 

variable to study 9 regression models. Applying the same power ranges to equation 

(2), yields 27 models. Applying the same power ranges to equation (3), yields 81 

models. Each regression variable can have its own unique range of powers. Note 

that as the number of enumerated powers increases, the total number of models 

jumps very quickly. 

The Case of One Independent Variable 
Let’s start with the simple case of the regression model in equation (4). Here is the 

MATLAB code for the calculations that determine the models in the main bin and 

then test them with the other bins. 
 

function [bestR2,bestMIdx,bestPwrs,bestCoeffs,mdlBest,mdlAll] ... 

  = ebrm1(xdata,ydata,xlow,xstep,xhi) 

  warning("off") 
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  fprintf("Please wait ....\n"); 

  [S,xdata,ydata]= Init(xdata,ydata,xlow,xstep,xhi); 

  i1 = S.Blow(1); 

  i2 = S.Bhi(1); 

  x = xdata(i1:i2,:); 

  y = ydata(i1:i2); 

  bestR2a = 0; 

  for i=1:S.M 

    pArr = S.pwrMat(i,1:S.V+1); 

    py = pArr(1);  

    px1 = pArr(2);  

    eval(S.sMdlX); 

    eval(S.sMdlY); 

    mdl = fitlm(X,yt); 

    r2a = mdl.Rsquared.Adjusted; 

    if isnan(r2a) || isinf(r2a) || r2a < 0 || r2a > 1 

      r2a = 0;  

    end 

    if bestR2a < r2a 

      bestR2a = r2a; 

      bestMdl = mdl; 

      bestpArr = pArr; 

    end 

    S.stats(i,1:S.V+2) = ... 

      [mdl.Coefficients{1,1}, ... 

       mdl.Coefficients{2,1}, ... 

       r2a]; 

  end 

  fprintf("for Bin 1\nBest powers: ") 

  fprintf("%f, ", bestpArr); 

  fprintf("\nBest Model:\n") 

  bestMdl 

  anova(bestMdl,"summary") 

 

  fprintf("Finished calculations with Bin 1\n\n") 

  cr = size(S.V+1,1); 

  for iBin=2:S.B 

    x = xdata(S.Blow(iBin):S.Bhi(iBin),:); 

    y = ydata(S.Blow(iBin):S.Bhi(iBin)); 

    for i=1:S.M 

      pArr = S.pwrMat(i,1:S.V+1); 

      py = pArr(1); 

      px1 = pArr(2); 

      for k=1:S.V+1 

        cr(k) = S.stats(i,k); 

      end 

      eval(S.sEvalX); 

      eval(S.sEvalY); 

      % yhat=yhat'; 

      e = y-yhat; 

      SSres = sum(dot(e,e)); 

      ymean = mean(y); 

      e = y-ymean; 

      SStot = sum(dot(e,e)); 

      r2 = max(0,1 - SSres/SStot); 

      if r2 > 0 

        r2adj = 1 - (1-r2)*(S.N-1)/(S.N - S.V - 1); 
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      else 

        r2adj = 0; 

      end 

      S.Bin(iBin,i) = r2adj; 

      S.Bin(1,i) = S.Bin(1,i) + S.Bin(iBin,i); 

    end        

    [bestR2,bestMIdx] = max(S.Bin(iBin,:)); 

    bestPwrs = S.pwrMat(bestMIdx,:); 

    fprintf("Bin # %d\n", iBin) 

    fprintf("Best R2adj = %f\n", bestR2) 

    fprintf("Best model # %d\n", bestMIdx) 

    fprintf("Powers: ") 

    fprintf(" %f, ", bestPwrs) 

    fprintf("\n") 

 

  end 

  fprintf("\n\n") 

  S.Bin(1,:) = S.Bin(1,:)/(S.B-1); 

  [bestR2,bestMIdx] = max(S.Bin(1,:)); 

  bestPwrs = S.pwrMat(bestMIdx,:); 

  bestCoeffs = S.stats(bestMIdx,1:S.V+1);     

  x = xdata(S.Blow(1):S.Bhi(1),:); 

  y = ydata(S.Blow(1):S.Bhi(1)); 

  py = bestPwrs(1);  

  px1 = bestPwrs(2);  

  eval(S.sMdlX); 

  eval(S.sMdlY); 

  mdlBest = fitlm(X,yt); 

  fprintf("Using data in ALL bins -----------\n") 

  x = xdata; 

  y = ydata; 

  eval(S.sMdlX); 

  eval(S.sMdlY); 

  mdlAll = fitlm(X,yt); 

end 

 

function y = fxt(x,pwr) 

  if pwr > 0 

    y = x.^pwr; 

  elseif pwr < 0 

    y = 1./x.^abs(pwr); 

  else 

    y = log(x); 

  end 

end 

 

function y = fxinv(x,pwr) 

  if pwr > 0 

    y = x.^(1/pwr); 

  elseif pwr < 0 

    y = x.^abs(pwr); 

  else 

    y = exp(x); 

  end 

end 
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function [S,x,y]= Init(x,y,xlow,xstep,xhi) 

  [rows,cols] = size(x); 

  S.N = rows; 

  S.V = cols; 

  S.B = 4; 

  m = S.B+1; 

  delta = fix(S.N/m); 

  S.Blow(1) = 1;  

  S.Bhi(1) = 2*delta;  

  S.Blow(2) = 2*delta+1; 

  S.Bhi(2) = 3*delta; 

  S.Blow(3) = 3*delta+1; 

  S.Bhi(3) = 4*delta; 

  S.Blow(4) = 4*delta+1; 

  S.Bhi(4) = S.N;   

  % shuffle array 

  idx = randperm(S.N); 

  x = x(idx,:); 

  y = y(idx); 

 

  S.sMdlX = "X = [fxt(x(:,1),px1)];"; 

  S.sMdlY = "yt = fxt(y,py);"; 

  S.sEvalX = "yhat=cr(1)+cr(2)*fxt(x(:,1),px1);"; 

  S.sEvalY = "yhat = fxinv(yhat,1/py);"; 

  % count the total number of models 

  count=0; 

  for py=xlow(S.V+1):xstep(S.V+1):xhi(S.V+1) 

    for px1=xlow(1):xstep(1):xhi(1) 

      count=count+1;  

    end 

  end   

  S.M = count; 

 

  S.pwrMat = zeros(S.M,S.V+1); 

  S.stats= zeros(S.M,S.V+2); 

  i=0; 

  for py=xlow(S.V+1):xstep(S.V+1):xhi(S.V+1) 

    for px1=xlow(1):xstep(1):xhi(1) 

      i=i+1; 

      S.pwrMat(i,1:S.V+1)=[py,px1]; 

      % next struct maps rc(1) to rc(4) and RsqrAdj 

      S.stats(i,1:S.V+2) = [0,0,0]; 

    end 

  end   

 

  % Note use S.Bin(1,) to store the average values 

  % of S.Bin(2,) and up. 

  S.Bin = zeros(S.B,S.M); 

   

end    
 

The function  embr1() performs the calculations for the model in equation (4). The 

function has the following input parameters: 
 

• The parameter xdata is a single column vector that contains all the data for 

the independent variable. In the case of multiple independent variables, 
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xdata is a matrix where each column stores values for a specific independent 

variable. 

• The parameter ydata is a single column vector that contains all the data for 

the dependent variable. 

• The parameter xlow is a single row vector that contains all the initial 

powers. The first value belongs to the dependent variable. The second value 

belongs to the independent variable. In the case of multiple independent 

variables, the second value belongs to the first independent variable, the 

third value belongs to the second independent variable, and so on. 

• The parameter xstep is a single row vector that contains all the power 

increment values. The first value belongs to the dependent variable. The 

second value belongs to the independent variable. In the case of multiple 

independent variables, the second value belongs to the first independent 

variable, the third value belongs to the second independent variable, and so 

on. 

• The parameter xhi is a single row vector that contains all the final powers. 

The first value belongs to the dependent variable. The second value belongs 

to the independent variable. In the case of multiple independent variables, 

the second value belongs to the first independent variable, the third value 

belongs to the second independent variable, and so on. 
 

The function has the following output parameters: 
 

• The parameter bestR2 contains the adjusted R-square for the best model. 

• The parameter bestMIdx contains the index of the best model. 

• The parameter bestPwrs is an array that contains the powers of the best 

model. The first value belongs to the dependent variable. The second value 

belongs to the independent variable. In the case of multiple independent 

variables, the second value belongs to the first independent variable, the 

third value belongs to the second independent variable, and so on. 

• The parameter bestCoeffs is the array of regression coefficients for the best 

model. The first value is the intercept. The second value is the slope. In the 

case of multiple independent variables, the second value is the slope of the 

first independent variable, the third value is the slope of the second 

independent variable, and so on. 

• The parameter mdlBest contains the object for the best model. 

• The parameter mdlAll contains the object for the model that processes all the 

regression data. 
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The function embr1() calls the local function Init() to initialize the data by 

transforming the regression variables and initializing the index ranges that define 

the main bin and the test bins. The parameters for function Init() are: 
 

• The parameter x is a single column vector that contains all the data for the 

independent variable. In the case of multiple independent variables, x is a 

matrix where each column has data for a specific independent variable. 

• The parameter y is a single column vector that contains all of the data for the 

dependent variable. 

• The parameter xlow is a single row vector that contains all the initial 

powers. The first value belongs to the dependent variable. The second value 

belongs to the independent variable. In the case of multiple independent 

variables, the second value belongs to the first independent variable, the 

third value belongs to the second independent variable, and so on. 

• The parameter xstep is a single row vector that contains all the power 

increment values. The first value belongs to the dependent variable. The 

second value belongs to the independent variable. In the case of multiple 

independent variables, the second value belongs to the first independent 

variable, the third value belongs to the second independent variable, and so 

on. 

• The parameter xhi is a single row vector that contains all the final powers. 

The first value belongs to the dependent variable. The second value belongs 

to the independent variable. In the case of multiple independent variables, 

the second value belongs to the first independent variable, the third value 

belongs to the second independent variable, and so on. 
\ 

The function Init() has the following output parameters: 
 

• The parameter x is a single column vector that contains all the data for the 

independent variable. In the case of multiple independent variables, x is a 

matrix where each column has data for a specific independent variable. 

• The parameter y is a single column vector that contains all the data for the 

dependent variable. 

• The structure S that contains the following information: 

o The fields N, V, and B store the number of data points, number of 

independent variables, and number of bins, respectively. 

o Arrays Blow and Bhi store the ranges for the indices that define the 

various bins of data. 
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o The strings sMdlX and sMdlY store the transformations of x and y 

data. 

o The strings sEvalX and sEvalY are used to calculate projected y 

values and their inverse transformation, respectively. 

o The matrix pwrMat stores the powers used for each regression model. 

o The matrix stats stores the regression coefficient for each regression 

model. 

o The matrix Bin stores the array of adjusted R-square values. 
 

There are also the helper functions fxt() and fxinv(). The first transforms data 

based on the supplied power value. The second function performs the inverse 

transformation, based on the power value. 

 

After calling the function Init(), the function embr1() performs the following tasks: 
 

• Initialize the local arrays x and y to store the data for the main bin, from 

parameters xdata and ydata, respectively. 

• Set the best adjusted R-square value to 0. 

• Use a loop to iterate over each regression model: 

o Obtain the powers used for transforming the data from matrix 

S.pwrMat and store the powers in variables py and px1. In the case of 

multiple independent variables, the powers are stored in variables px1, 

px2, and so on. 

o Use the MATLAB function eval() to evaluate strings S.sMdlX and 

S.sMdlY. This step transforms the x and y data using the powers 

stored in variables py and px1. In the case of multiple independent 

variables, the powers are stored in variables px1, px2, and so on. This 

task ends up storing the independent variable(s) in matrix X and the 

dependent variable in array yt. 

o Invoke the MATLAB function fitlm() to calculate the regression 

model and store it in variable mdl. The arguments for calling function 

fitlm() are variables X and yt. 

o Store the adjusted R-square value of the model in variable r2a. 

o Validate the value in variable r2a and set it to 0 if it is Nan, or Inf, or 

outside the interval (0, 1). 

o Test if r2a is greater than bestR2a. If it is, then update bestR2a, the 

best model (stored in variable bestMdl), and the best array of powers 

(stored in variable bestpArr). 



Partition Model Selection`  10 

 

Copyright © 2025 by Namir Clement Shammas 

o Store the regression coefficient and the adjusted R-square of the 

current model in matrix S.stats. The first column stores the intercept 

values. The second column stores the slope values. The third column 

stores the adjusted R-square values.  In the case of multiple 

independent variables, the slopes for variables appear in the second 

column to the column before last. The last column stores the adjusted 

R-square values. 

• Display the regression results and ANOVA table for the main bin of data. 

• Use a loop to iterate over the test bins: 

o Store the xdata and ydata for the current bin in variables x and y, 

respectively. 

o Use a loop for each regression model: 

▪ Obtain the powers for the current model from matrix S.pwrMat 

and store them in variables py and px1. 

▪ Copy the regression coefficients of the current model from 

matrix S.stats into array cr. 

▪ Use the MATLAB function eval() with strings S.sEvalX  and 

S.sEvalY to calculate the projected values of y. 

▪  Calculate (and validate) the value of the adjusted R-square 

based on the projected values of y and those in the current bin. 

▪ Store adjusted R-square value in matrix S.Bin. 

▪ Accumulate the values of of the adjusted R-square in row 

S.Bin(1,i). 

o Obtain the best model in the current bin and store that information in 

variables bestR2 and bestMIdx. Also store the powers for the best 

model in variable bestPwrs. 

o Calculate the regression model for the data in the main bin. 

Test Program for Function ebrm1() 
This section tests a simple model of Y = 5 + 2 * X. The following listings contains 

the code for the test program: 
 

clc 

clear all 

 

n=1250; 

xdata=zeros(n,1); 

ydata=zeros(n,1); 

for i=1:n 
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  z = 1; 

  for j=1:1 

    z = z + 10; 

    xdata(i,j) = 1+rand*z; 

  end 

  ydata(i) = 5 + 2 * xdata(i,1); 

end 

 

[bestR2,bestMIdx,bestPwrs,bestCoeffs,mdlBest,mdlAll] = ... 

  ebrm1(xdata,ydata,zeros(1,2),0.5+zeros(1,2),... 

  4+zeros(1,2)) 

fprintf("Regression ANOVA table for best model\n") 

anova(mdlBest,"summary") 

fprintf("Regression ANOVA table for ALL data\n") 

anova(mdlAll,"summary") 

% save variables for future use 

save("test11.mat", "bestR2","bestPwrs", ... 

  "bestCoeffs","mdlBest","mdlAll") 
 

The test program performs the following tasks: 
 

• Sets the number of data points to 1250. This value ends up assigning 500 

points to the main bin, and 250 points to each test bin. These numbers are 

based on the fact that function ebrm1() uses three test bins. 

• Create the arrays xdata and ydata and assign random values to xdata. 

Calculate the values for ydata using ydata(i) = 5 + 2 * xdata(i,1). 

• Call function ebrm1() and supply the following arguments: 

o The array xdata and ydata supply the regression data. 

o The array zeros(1, 2) supplies zeroes as the lower limits for the 

powers of both Y and X. 

o The array 0.5+zeros(1, 2) supplies 0.5 as the increments for the 

powers of both Y and X. 

o The array 4+zeros(1, 2) supplies 4 as the upper limits for the powers 

of both Y and X. 

• Display the output parameters bestR2, bestMIdx, bestPwrs, bestCoeffs, 

mdlBest, and mdlAll. 

• Display the regression ANOVA table for the best model. 

• Display the regression ANOVA table for the model mdlAll. 

• Save the output parameters to a .mat file for future use. 
 

I will present the output of the test program piecewise. Ther first set of output lines 

are: 
 

Please wait .... 

for Bin 1 

Best powers: 1.000000, 1.000000,  

Best Model: 
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bestMdl =  

 

 

Linear regression model: 

    y ~ 1 + x1 

 

Estimated Coefficients: 

                   Estimate        SE          tStat       pValue 

                   ________    __________    __________    ______ 

 

    (Intercept)       5        2.4455e-08    2.0446e+08      0    

    x1                2        3.4681e-09    5.7669e+08      0    

 

 

Number of observations: 500, Error degrees of freedom: 498 

Root Mean Squared Error: 2.42e-07 

R-squared: 1,  Adjusted R-Squared: 1 

F-statistic vs. constant model: Inf, p-value = 0 

 

ans = 

 

  3×5 table 

 

                SumSq    DF     MeanSq     F     pValue 

                _____    ___    ______    ___    ______ 

 

    Total       19436    499    38.949                  

    Model       19436      1     19436    Inf       0   

    Residual        0    498         0                  

 

Finished calculations with Bin 1 
 

The above output indicates that the best powers for Y and X are 1 and 1. This is the 

linear relationship coded in the test program.  The output shows the correct values 

of 5 for the intercept, and 2 for the slope. 

 

The second part of the output is: 
 

Bin # 2 

Best R2adj = 1.000000 

Best model # 21 

Powers:  1.000000,  1.000000,  

Bin # 3 

Best R2adj = 1.000000 

Best model # 21 

Powers:  1.000000,  1.000000,  

Bin # 4 

Best R2adj = 1.000000 

Best model # 21 

Powers:  1.000000,  1.000000, 
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The output for bins 2, 3, and 4 shows that the best powers belong to the linear 

relationship between variables X and Y. These calculations are based on the best 

model obtained in the main bin—Y=5+2*X. 

 

The third output part shows the results for the best model: 
 

Using data in ALL bins ----------- 

 

bestR2 = 

 

     1 

 

 

bestMIdx = 

 

    21 

 

 

bestPwrs = 

 

     1     1 

 

 

bestCoeffs = 

 

    5.0000    2.0000 

 

 

mdlBest =  

 

 

Linear regression model: 

    y ~ 1 + x1 

 

Estimated Coefficients: 

                   Estimate        SE          tStat       pValue 

                   ________    __________    __________    ______ 

 

    (Intercept)       5        3.4555e-08    1.4469e+08      0    

    x1                2        4.8036e-09    4.1635e+08      0    

 

 

Number of observations: 500, Error degrees of freedom: 498 

Root Mean Squared Error: 3.42e-07 

R-squared: 1,  Adjusted R-Squared: 1 

F-statistic vs. constant model: 1.55e+33, p-value = 0 
 

And finally, the output for the regression using all of the data is: 
 

mdlAll =  

 

 

Linear regression model: 

    y ~ 1 + x1 
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Estimated Coefficients: 

                   Estimate    SE    tStat    pValue 

                   ________    __    _____    ______ 

 

    (Intercept)       5        0      Inf       0    

    x1                2        0      Inf       0    

 

 

Number of observations: 1250, Error degrees of freedom: 1248 

R-squared: 1,  Adjusted R-Squared: 1 

F-statistic vs. constant model: 2.53e+32, p-value = 0 
 

Since the values of Y were error-free the various output segments agree that Y = 5 

+ 2*X is the best model. If we inject small errors in the values of Y, the best model 

would most likely still be the linear model. The values for the intercept and slope 

would be close to 5 and 2, respectively. 

Working with Errors in the Dependent Variable  
The previous test code calculated values of Y using Y = 5 + 2*X. The regression 

calculations were able to identify the model and calculate the exact values for the 

regression coefficients. In this section, I present a test program that injects +/- 5% 

error in the Y values. 

 

The code for test program test1Err.m is: 
 

clc 

clear all 

diary test1Err.txt 

n=1250; 

xdata=zeros(n,1); 

ydata=zeros(n,1); 

for i=1:n 

  z = 1; 

  for j=1:1 

    z = z + 10; 

    xdata(i,j) = 1+rand*z; 

  end 

  ydata(i) = 5 + 2 * xdata(i,1); 

  ydata(i) = ydata(i)*(1+0.1*(rand-0.5)); 

end 

 

[bestR2,bestMIdx,bestPwrs,bestCoeffs,mdlBest,mdlAll] = ... 

  ebrm1(xdata,ydata,zeros(1,2),0.5+zeros(1,2),... 

  4+zeros(1,2)) 

save("test11.mat", "bestR2","bestPwrs", ... 

  "bestCoeffs","mdlBest","mdlAll") 

diary off 
 

The output (which varies between different runs) is: 
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Please wait .... 

for Bin 1 

Best powers: 1.000000, 1.000000,  

Best Model: 

 

bestMdl =  

 

 

Linear regression model: 

    y ~ 1 + x1 

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue    

                   ________    _________    ______    ___________ 

 

    (Intercept)     5.0449      0.058436    86.332    9.2973e-302 

    x1              1.9973     0.0080331    248.64              0 

 

 

Number of observations: 500, Error degrees of freedom: 498 

Root Mean Squared Error: 0.56 

R-squared: 0.992,  Adjusted R-Squared: 0.992 

F-statistic vs. constant model: 6.18e+04, p-value = 0 

 

ans = 

 

  3×5 table 

 

                SumSq     DF     MeanSq       F      pValue 

                ______    ___    _______    _____    ______ 

 

    Total        19546    499      39.17                    

    Model        19390      1      19390    61821       0   

    Residual    156.19    498    0.31364                    

 

Finished calculations with Bin 1 

 

Bin # 2 

Best R2adj = 0.993258 

Best model # 21 

Powers:  1.000000,  1.000000,  

Bin # 3 

Best R2adj = 0.991390 

Best model # 21 

Powers:  1.000000,  1.000000,  

Bin # 4 

Best R2adj = 0.993555 

Best model # 21 

Powers:  1.000000,  1.000000,  

 

 

Using data in ALL bins ----------- 

 

bestR2 = 

 

    0.9927 
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bestMIdx = 

 

    21 

 

 

bestPwrs = 

 

     1     1 

 

 

bestCoeffs = 

 

    5.0449    1.9973 

 

 

mdlBest =  

 

 

Linear regression model: 

    y ~ 1 + x1 

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue    

                   ________    _________    ______    ___________ 

 

    (Intercept)     5.0449      0.058436    86.332    9.2973e-302 

    x1              1.9973     0.0080331    248.64              0 

 

 

Number of observations: 500, Error degrees of freedom: 498 

Root Mean Squared Error: 0.56 

R-squared: 0.992,  Adjusted R-Squared: 0.992 

F-statistic vs. constant model: 6.18e+04, p-value = 0 

 

mdlAll =  

 

 

Linear regression model: 

    y ~ 1 + x1 

 

Estimated Coefficients: 

                   Estimate       SE        tStat     pValue 

                   ________    _________    ______    ______ 

 

    (Intercept)     5.0201      0.034975    143.54      0    

    x1              1.9973     0.0049098    406.81      0    

 

 

Number of observations: 1250, Error degrees of freedom: 1248 

Root Mean Squared Error: 0.546 

R-squared: 0.993,  Adjusted R-Squared: 0.993 

F-statistic vs. constant model: 1.65e+05, p-value = 0 
 

The main bin and the test bins favor the linear model. The regression coefficients 

are close to those of the error-free model. 
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If you run the above code several times you may see that the main bin favors a 

nonlinear model, and the test bins favor the linear model as obtained by the main 

bin. The Partition bins favor the linear model. 

 

When the test bins agree about the best model, that model is vindicated as being 

the best. By contrast, when the test bins fail to be on the same proverbial page, 

there is no true best model. This is often confirmed by the low values of the 

adjusted R-square statistic. In this case, you may want to expand or shift the ranges 

of powers for some or all the regression variables. 

Testing Model with No Correlation between the Variables  
This section looks at the extreme case, where the values of the variables X and Y 

are random and uncorrelated—there is no model that describes a relationship 

between X and Y. 

 

The MATLAB code for testing this case appears below. Note the assignment rof 

random values to the elements of array ydata. 
 

clc 

clear all 

diary test1Err2.txt 

n=1250; 

xdata=zeros(n,1); 

ydata=zeros(n,1); 

for i=1:n 

  z = 1; 

  for j=1:1 

    z = z + 10; 

    xdata(i,j) = 1+rand*z; 

  end 

  ydata(i) = 50*rand; 

   

end 

 

[bestR2,bestMIdx,bestPwrs,bestCoeffs,mdlBest,mdlAll] = ... 

  ebrm1(xdata,ydata,zeros(1,2),0.5+zeros(1,2),... 

  4+zeros(1,2)) 

save("test13.mat", "bestR2","bestPwrs", ... 

  "bestCoeffs","mdlBest","mdlAll") 

diary off 

 
 

A sample output from the above test program is: 
 

Please wait .... 

for Bin 1 
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Best powers: 4.000000, 0.500000,  

Best Model: 

 

bestMdl =  

 

 

Linear regression model: 

    y ~ 1 + x1 

 

Estimated Coefficients: 

                    Estimate         SE        tStat      pValue   

                   __________    __________    ______    _________ 

 

    (Intercept)    9.1406e+05    2.8679e+05    3.1873    0.0015266 

    x1             1.3098e+05    1.1141e+05    1.1756      0.24031 

 

 

Number of observations: 500, Error degrees of freedom: 498 

Root Mean Squared Error: 1.68e+06 

R-squared: 0.00277,  Adjusted R-Squared: 0.000765 

F-statistic vs. constant model: 1.38, p-value = 0.24 

 

ans = 

 

  3×5 table 

 

                  SumSq       DF       MeanSq        F       pValue  

                __________    ___    __________    ______    _______ 

 

    Total       1.4102e+15    499    2.8261e+12                      

    Model       3.9029e+12      1    3.9029e+12    1.3821    0.24031 

    Residual    1.4063e+15    498    2.8239e+12                      

 

Finished calculations with Bin 1 

 

Bin # 2 

Best R2adj = 0.000000 

Best model # 1 

Powers:  0.000000,  0.000000,  

Bin # 3 

Best R2adj = 0.000000 

Best model # 1 

Powers:  0.000000,  0.000000,  

Bin # 4 

Best R2adj = 0.000000 

Best model # 1 

Powers:  0.000000,  0.000000,  

 

 

Using data in ALL bins ----------- 

 

bestR2 = 

 

     0 

 

 

bestMIdx = 
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     1 

 

 

bestPwrs = 

 

     0     0 

 

 

bestCoeffs = 

 

    2.9141    0.0107 

 

 

mdlBest =  

 

 

Linear regression model: 

    y ~ 1 + x1 

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue   

                   ________    ________    _______    __________ 

 

    (Intercept)      2.9141     0.13051     22.328    4.8939e-77 

    x1             0.010727    0.070927    0.15124       0.87985 

 

 

Number of observations: 500, Error degrees of freedom: 498 

Root Mean Squared Error: 0.984 

R-squared: 4.59e-05,  Adjusted R-Squared: -0.00196 

F-statistic vs. constant model: 0.0229, p-value = 0.88 

 

mdlAll =  

 

 

Linear regression model: 

    y ~ 1 + x1 

 

Estimated Coefficients: 

                   Estimate        SE        tStat        pValue    

                   _________    ________    ________    ___________ 

 

    (Intercept)        2.987     0.07771      38.438    6.3822e-214 

    x1             -0.021711    0.042768    -0.50765        0.61179 

 

 

Number of observations: 1250, Error degrees of freedom: 1248 

Root Mean Squared Error: 0.938 

R-squared: 0.000206,  Adjusted R-Squared: -0.000595 

F-statistic vs. constant model: 0.258, p-value = 0.612 
 

The main bin favors a nonlinear model, while the test bins favor the power (log-

log) models. The adjusted R-square values are very low (and some are even 
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negative) to indicate that there isn’t any correlation between the regression 

variables. 

Working with Relatively Small Data Sets 
The test code in the previous section worked with 1250 data points. What if you 

have, say, 100 data points or even less? Using multiple bins with non-overlapping 

data may not work well since each bin will have relatively a small number of data 

points. In this section we look at another approach. Here, each bin has 80% of the 

shuffled data. So, when we move from one bin to another, the models obtained 

from the first bin will encounter many data points they have already processed in 

the first bin. 

 

The scheme that I described above can also be used with large number of data 

points. This option is all yours! 

 

Here is the code for the MATLAB function ebrm1Small(): 
 

function [bestR2,bestMIdx,bestPwrs,bestCoeffs,mdlBest,mdlAll] ... 

  = ebrm1Small(xdata,ydata,xlow,xstep,xhi) 

  % handles relatively small data sets 

  warning("off") 

  fprintf("Please wait ....\n"); 

  [S,xdata,ydata]= Init(xdata,ydata,xlow,xstep,xhi); 

  % shuffle array 

  idx = randperm(S.N); 

  x = xdata(idx,:); 

  y = ydata(idx);  

  dSize = fix(0.8*S.N); 

  x = x(1:dSize,:); 

  y = y(1:dSize); 

  bestR2a = 0; 

  for i=1:S.M 

    pArr = S.pwrMat(i,1:S.V+1); 

    py = pArr(1);  

    px1 = pArr(2);  

    eval(S.sMdlX); 

    eval(S.sMdlY); 

    mdl = fitlm(X,yt); 

    r2a = mdl.Rsquared.Adjusted; 

    if isnan(r2a) || isinf(r2a) || r2a < 0 || r2a > 1 

      r2a = 0;  

    end 

    if bestR2a < r2a 

      bestR2a = r2a; 

      bestMdl = mdl; 

      bestpArr = pArr; 

    end 
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    S.stats(i,1:S.V+2) = ... 

      [mdl.Coefficients{1,1}, ... 

       mdl.Coefficients{2,1}, ... 

       r2a]; 

  end 

  fprintf("for Bin 1\nBest powers: ") 

  fprintf("%f, ", bestpArr); 

  fprintf("\nBest Model:\n") 

  bestMdl 

  anova(bestMdl,"summary") 

 

  fprintf("Finished calculations with Bin 1\n\n") 

  cr = size(S.V+1,1); 

  for iBin=2:S.B 

    % shuffle array 

    idx = randperm(S.N); 

    x = xdata(idx,:); 

    y = ydata(idx);  

    x = x(1:dSize,:); 

    y = y(1:dSize); 

    for i=1:S.M 

      pArr = S.pwrMat(i,1:S.V+1); 

      py = pArr(1); 

      px1 = pArr(2); 

      for k=1:S.V+1 

        cr(k) = S.stats(i,k); 

      end 

      eval(S.sEvalX); 

      eval(S.sEvalY); 

      % yhat=yhat'; 

      e = y-yhat; 

      SSres = sum(dot(e,e)); 

      ymean = mean(y); 

      e = y-ymean; 

      SStot = sum(dot(e,e)); 

      r2 = max(0,1 - SSres/SStot); 

      if r2 > 0 

        r2adj = 1 - (1-r2)*(S.N-1)/(S.N - S.V - 1); 

      else 

        r2adj = 0; 

      end 

      S.Bin(iBin,i) = r2adj; 

      S.Bin(1,i) = S.Bin(1,i) + S.Bin(iBin,i); 

    end        

    [bestR2,bestMIdx] = max(S.Bin(iBin,:)); 

    bestPwrs = S.pwrMat(bestMIdx,:); 

    fprintf("Bin # %d\n", iBin) 

    fprintf("Best R2adj = %f\n", bestR2) 

    fprintf("Best model # %d\n", bestMIdx) 

    fprintf("Powers: ") 

    fprintf(" %f, ", bestPwrs) 

    fprintf("\n") 

 

  end 

  fprintf("\n\n") 

  S.Bin(1,:) = S.Bin(1,:)/(S.B-1); 

  [bestR2,bestMIdx] = max(S.Bin(1,:)); 
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  bestPwrs = S.pwrMat(bestMIdx,:); 

  bestCoeffs = S.stats(bestMIdx,1:S.V+1);     

  x = xdata(1:dSize,:); 

  y = ydata(1:dSize); 

  py = bestPwrs(1);  

  px1 = bestPwrs(2);  

  eval(S.sMdlX); 

  eval(S.sMdlY); 

  mdlBest = fitlm(X,yt); 

  fprintf("Using data in ALL bins -----------\n") 

  x = xdata; 

  y = ydata; 

  eval(S.sMdlX); 

  eval(S.sMdlY); 

  mdlAll = fitlm(X,yt); 

end 

 

function y = fxt(x,pwr) 

  if pwr > 0 

    y = x.^pwr; 

  elseif pwr < 0 

    y = 1./x.^abs(pwr); 

  else 

    y = log(x); 

  end 

end 

 

function y = fxinv(x,pwr) 

  if pwr > 0 

    y = x.^(1/pwr); 

  elseif pwr < 0 

    y = x.^abs(pwr); 

  else 

    y = exp(x); 

  end 

end 

 

 

function [S,x,y]= Init(x,y,xlow,xstep,xhi) 

  [rows,cols] = size(x); 

  S.N = rows; 

  S.V = cols; 

  S.B = 4; 

 

  S.sMdlX = "X = [fxt(x(:,1),px1)];"; 

  S.sMdlY = "yt = fxt(y,py);"; 

  S.sEvalX = "yhat=cr(1)+cr(2)*fxt(x(:,1),px1);"; 

  S.sEvalY = "yhat = fxinv(yhat,1/py);"; 

  % count the total number of models 

  count=0; 

  for py=xlow(S.V+1):xstep(S.V+1):xhi(S.V+1) 

    for px1=xlow(1):xstep(1):xhi(1) 

      count=count+1;  

    end 

  end   

  S.M = count; 
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  S.pwrMat = zeros(S.M,S.V+1); 

  S.stats= zeros(S.M,S.V+2); 

  i=0; 

  for py=xlow(S.V+1):xstep(S.V+1):xhi(S.V+1) 

    for px1=xlow(1):xstep(1):xhi(1) 

      i=i+1; 

      S.pwrMat(i,1:S.V+1)=[py,px1]; 

      % next struct maps rc(1) to rc(4) and RsqrAdj 

      S.stats(i,1:S.V+2) = [0,0,0]; 

    end 

  end   

 

  % Note use S.Bin(1,) to store the average values 

  % of S.Bin(2,) and up. 

  S.Bin = zeros(S.B,S.M); 

   

end  
 

The above function has the same input and output parameters as function ebrm1(). 

The difference between the two functions is the internal code. The above function 

has the following changes: 
 

• The arrays S.Blow and S.Bhi have been removed as they are no  longer 

needed, since the function uses one bin.  

• Each bin has 80% random elements from the re-shuffled main data arrays 

xdata and ydata. 
 

The accompanying test program, test1Small.m, is: 
 

clc 

clear all 

diary test1Small.txt 

n=100; 

xdata=zeros(n,1); 

ydata=zeros(n,1); 

for i=1:n 

  z = 1; 

  for j=1:1 

    z = z + 10; 

    xdata(i,j) = 1+rand*z; 

  end 

  ydata(i) = 5 + 2 * xdata(i,1); 

end 

 

[bestR2,bestMIdx,bestPwrs,bestCoeffs,mdlBest,mdlAll] = ... 

  ebrm1Small(xdata,ydata,zeros(1,2),0.5+zeros(1,2),... 

  4+zeros(1,2)) 

save("test11Small.mat", "bestR2","bestPwrs", ... 

  "bestCoeffs","mdlBest","mdlAll") 

diary off 
 

Notice that the above test program works with 100 data points. It calls function 

ebrm1Small(). The output is (which agrees with the previous output): 
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Please wait .... 

for Bin 1 

Best powers: 1.000000, 1.000000,  

Best Model: 

 

bestMdl =  

 

 

Linear regression model: 

    y ~ 1 + x1 

 

Estimated Coefficients: 

                   Estimate        SE          tStat       pValue 

                   ________    __________    __________    ______ 

 

    (Intercept)       5        5.9575e-08    8.3928e+07      0    

    x1                2        7.6567e-09    2.6121e+08      0    

 

 

Number of observations: 80, Error degrees of freedom: 78 

Root Mean Squared Error: 2.16e-07 

R-squared: 1,  Adjusted R-Squared: 1 

F-statistic vs. constant model: 4.63e+33, p-value = 0 

 

ans = 

 

  3×5 table 

 

                  SumSq       DF      MeanSq          F         pValue 

                __________    __    __________    __________    ______ 

 

    Total           3182.3    79        40.282                         

    Model           3182.3     1        3182.3    4.6273e+33       0   

    Residual    5.3643e-29    78    6.8772e-31                         

 

Finished calculations with Bin 1 

 

Bin # 2 

Best R2adj = 1.000000 

Best model # 21 

Powers:  1.000000,  1.000000,  

Bin # 3 

Best R2adj = 1.000000 

Best model # 21 

Powers:  1.000000,  1.000000,  

Bin # 4 

Best R2adj = 1.000000 

Best model # 21 

Powers:  1.000000,  1.000000,  

 

 

Using data in ALL bins ----------- 

 

bestR2 = 

 

     1 
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bestMIdx = 

 

    21 

 

 

bestPwrs = 

 

     1     1 

 

 

bestCoeffs = 

 

    5.0000    2.0000 

 

 

mdlBest =  

 

 

Linear regression model: 

    y ~ 1 + x1 

 

Estimated Coefficients: 

                   Estimate    SE    tStat    pValue 

                   ________    __    _____    ______ 

 

    (Intercept)       5        0      Inf       0    

    x1                2        0      Inf       0    

 

 

Number of observations: 80, Error degrees of freedom: 78 

R-squared: 1,  Adjusted R-Squared: 1 

F-statistic vs. constant model: 3.81e+31, p-value = 0 

 

mdlAll =  

 

 

Linear regression model: 

    y ~ 1 + x1 

 

Estimated Coefficients: 

                   Estimate    SE    tStat    pValue 

                   ________    __    _____    ______ 

 

    (Intercept)       5        0      Inf       0    

    x1                2        0      Inf       0    

 

 

Number of observations: 100, Error degrees of freedom: 98 

R-squared: 1,  Adjusted R-Squared: 1 



Partition Model Selection`  26 

 

Copyright © 2025 by Namir Clement Shammas 

Models for Heteronomials of Order Two and Up 
The study includes versions of ebrm1 that work with heteronomials of orders 2 to 

5. The code for these functions is very similar to that of ebrm1. Of course, since 

these functions have two or more independent variables, the code has expanded 

parts and bigger arrays/matrices to handle the additional variables. 

 

Readers may ask if they can use the same independent variable in two terms of a 

regression model. The answer is yes, if each occurrence of that independent 

variable has power ranges that DO NOT OVERLAP! The matrix xdata would need 

two columns with the same data. Of course, there is no guarantee that such an 

approach would yield meaningful results, but one is free to experiment. 

 

Note that the test programs write a copy of the console output to diary files (with 

.txt extensions). These files contain HTML tags <strong> and </strong>. You can 

delete these tags to get a better view of the text files. 

The Zip File 
You will find the code for the various versions of the ebrm functions, their test 

programs, and sample output in the ZIP file for this project. The ZIP file contains 

the PDF version of the document, and the files listed in the next table. 
 

Number of Independent Variables Files 

1 ebrm1.m 

test1.m 

test1.txt 

test1Err.m 

test1Err.txt 

test1Err2.m 

test1Err2.txt 

test11.mat 

test12.mat 

test13.mat 

 

ebrm1Small.m 

test1Small.m 

test1Small.txt 

test11Small.mat 
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Number of Independent Variables Files 

2 ebrm2.m 

test2.m 

test2.txt 

test21.mat 

 

ebrm2Small.m 

test2Small.m 

test2Small.txt 

test21Small.mat 

3 ebrm3.m 

test3.m 

test3.txt 

test31.mat 

 

ebrm3Small.m 

test3Small.m 

test3Small.txt 

test31Small.mat 

4 ebrm4.m 

test4.m 

test4.txt 

test41.mat 

 

ebrm4Small.m 

test4Small.m 

test4Small.txt 

test41Small.mat 

5 ebrm5.m 

test5.m 

test5.txt 

test51.mat 

 

ebrm5Small.m 

test5Small.m 

test5Small.txt 

test51Small.mat 

 


