
Partition Model Selection` 1

Copyright © 2025 by Namir Clement Shammas

Partition Model Selection
Working with Heteronomials

by

Namir Clement Shammas

The Heretic Empiricist

Contents
Introduction .. 1

Partition Regression ... 2

The Basics .. 3

The Case of One Independent Variable ... 3

Test Program for Function ebrm1() ...10

Working with Errors in the Dependent Variable ..14

Testing Model with No Correlation between the Variables17

Working with Relatively Small Data Sets ...20

Models for Heteronomials of Order Two and Up ..26

The Zip File ..26

Introduction
Polynomials are very popular constructs for math, calculus, and curve fitting. A

polynomial has one or more terms with the independent variable raised to an

integer power. Parallel to polynomials are loosely named multivariable constructs

that involve different independent variables. I will rename these constructs

heteronomials. An example of a simple linear heteronomial, often used in simple

multiple linear regression is:

Y = a + b1X1 + b2X2 (1)

Where X1 and X2 are the independent variables and Y is the dependent variable. I

call equation (1) a linear heteronomial because it uses linear values of the

variables. A simple example of a non-linear heteronomial is:

Y = a + b1/X1 + b2X2
2 (2)

Partition Model Selection` 2

Copyright © 2025 by Namir Clement Shammas

In equation (2) the variable X1 is raised to the power -1 and the variable X2 is

raised to the power 2. More advanced heteronomials involve more independent

variables and different powers like –3, –2, 3, 0.5, 1.5, and so on. The power zero is

translated to the ln(x) function. The other powers are taken at face value. In this

study, I limit the powers of the heteronomials to negative, zero (to use function

ln(x)), and positive numbers (both integers and reals). The general form of a

heteronomial is:

Ypy = a + b1 𝑋1
𝑝𝑥1

 + b2𝑋2
𝑝𝑥2

 + … + bn𝑋𝑛
𝑝𝑥𝑛

 (3)

Notice that each variable in equation (3) can have a non-unity power!

Partition Regression
Partitioning the data in a set of training data and one or more sets of testing data

allows us to test the models derived in the training phase with data the models have

not yet encountered. This approach allows us to examine the robustness of the

models.

I will test using the partition approach to perform curve fitting with heteronomials,

like the ones in equation (1). The general approach uses the following steps:

1. Divide the data into bins (or pages). The first bin should be bigger than the

other bins. I will choose the first bin to be twice as big as the remaining data

bins. The first bin is the training bin. The other bins are the testing bins.

2. Determine the set of heteronomial models using the data in the training bin.

3. Display the results for the best model that employes the training data.

4. Use the set of models generated in step 2 to calculate the corresponding sets

of predicted values of the dependent variable in the testing bins. By

comparing the original values and the set of predicted ones in each test bin,

we calculate the adjusted coefficients of determination (adjusted R-square).

5. Determine for each bin, (that yields the highest values of the adjusted R-

square) of the set of the models obtained in step 2.

6. Display the results (best powers and adjusted R-square) for each test bin.

7. Display detailed results for the best fit in the test bins.

8. Display the results for the model using ALL the data.

There are basically the following results to compare:

1. The best model (using the training bin data) that fits the test bins.

Partition Model Selection` 3

Copyright © 2025 by Namir Clement Shammas

2. The best model that uses the training bin.

3. The best model that uses all the data.

Option 1 has the most weight because it applies the best model from the training

data to test data it has not seen! Option 3 is the next most important weight,

because it uses all the data.

The Basics
The regression models are built using various powers for each variable. For

example, in the case of one independent variable, we have:

Ypy = a + b Xpx (4)

In the case of two and three independent variables, we have:

Ypy = a + b1 𝑋1
𝑝𝑥1

 + b2 𝑋2
𝑝𝑥2

 (5)

Ypy = a + b1 𝑋1
𝑝𝑥1

 + b2𝑋2
𝑝𝑥2

 + b3𝑋3
𝑝𝑥3

 (6)

And so on. Since we don’t know the powers to best fit predicted values of the

dependent variable, we need to search each power within a range. The values for

all the powers used fall in user-defined ranges. The search uses lower and upper

range limits and search increments specified by the user. These values can be

negative, zero, and positive. In the case of zero, the code uses function ln(x). The

models tested comprise of the combination of various powers for each variable.

For example, using equation (1), we can select the powers 0, 1, and 2 for each

variable to study 9 regression models. Applying the same power ranges to equation

(2), yields 27 models. Applying the same power ranges to equation (3), yields 81

models. Each regression variable can have its own unique range of powers. Note

that as the number of enumerated powers increases, the total number of models

jumps very quickly.

The Case of One Independent Variable
Let’s start with the simple case of the regression model in equation (4). Here is the

MATLAB code for the calculations that determine the models in the main bin and

then test them with the other bins.

function [bestR2,bestMIdx,bestPwrs,bestCoeffs,mdlBest,mdlAll] ...

 = ebrm1(xdata,ydata,xlow,xstep,xhi)

 warning("off")

Partition Model Selection` 4

Copyright © 2025 by Namir Clement Shammas

 fprintf("Please wait\n");

 [S,xdata,ydata]= Init(xdata,ydata,xlow,xstep,xhi);

 i1 = S.Blow(1);

 i2 = S.Bhi(1);

 x = xdata(i1:i2,:);

 y = ydata(i1:i2);

 bestR2a = 0;

 for i=1:S.M

 pArr = S.pwrMat(i,1:S.V+1);

 py = pArr(1);

 px1 = pArr(2);

 eval(S.sMdlX);

 eval(S.sMdlY);

 mdl = fitlm(X,yt);

 r2a = mdl.Rsquared.Adjusted;

 if isnan(r2a) || isinf(r2a) || r2a < 0 || r2a > 1

 r2a = 0;

 end

 if bestR2a < r2a

 bestR2a = r2a;

 bestMdl = mdl;

 bestpArr = pArr;

 end

 S.stats(i,1:S.V+2) = ...

 [mdl.Coefficients{1,1}, ...

 mdl.Coefficients{2,1}, ...

 r2a];

 end

 fprintf("for Bin 1\nBest powers: ")

 fprintf("%f, ", bestpArr);

 fprintf("\nBest Model:\n")

 bestMdl

 anova(bestMdl,"summary")

 fprintf("Finished calculations with Bin 1\n\n")

 cr = size(S.V+1,1);

 for iBin=2:S.B

 x = xdata(S.Blow(iBin):S.Bhi(iBin),:);

 y = ydata(S.Blow(iBin):S.Bhi(iBin));

 for i=1:S.M

 pArr = S.pwrMat(i,1:S.V+1);

 py = pArr(1);

 px1 = pArr(2);

 for k=1:S.V+1

 cr(k) = S.stats(i,k);

 end

 eval(S.sEvalX);

 eval(S.sEvalY);

 % yhat=yhat';

 e = y-yhat;

 SSres = sum(dot(e,e));

 ymean = mean(y);

 e = y-ymean;

 SStot = sum(dot(e,e));

 r2 = max(0,1 - SSres/SStot);

 if r2 > 0

 r2adj = 1 - (1-r2)*(S.N-1)/(S.N - S.V - 1);

Partition Model Selection` 5

Copyright © 2025 by Namir Clement Shammas

 else

 r2adj = 0;

 end

 S.Bin(iBin,i) = r2adj;

 S.Bin(1,i) = S.Bin(1,i) + S.Bin(iBin,i);

 end

 [bestR2,bestMIdx] = max(S.Bin(iBin,:));

 bestPwrs = S.pwrMat(bestMIdx,:);

 fprintf("Bin # %d\n", iBin)

 fprintf("Best R2adj = %f\n", bestR2)

 fprintf("Best model # %d\n", bestMIdx)

 fprintf("Powers: ")

 fprintf(" %f, ", bestPwrs)

 fprintf("\n")

 end

 fprintf("\n\n")

 S.Bin(1,:) = S.Bin(1,:)/(S.B-1);

 [bestR2,bestMIdx] = max(S.Bin(1,:));

 bestPwrs = S.pwrMat(bestMIdx,:);

 bestCoeffs = S.stats(bestMIdx,1:S.V+1);

 x = xdata(S.Blow(1):S.Bhi(1),:);

 y = ydata(S.Blow(1):S.Bhi(1));

 py = bestPwrs(1);

 px1 = bestPwrs(2);

 eval(S.sMdlX);

 eval(S.sMdlY);

 mdlBest = fitlm(X,yt);

 fprintf("Using data in ALL bins -----------\n")

 x = xdata;

 y = ydata;

 eval(S.sMdlX);

 eval(S.sMdlY);

 mdlAll = fitlm(X,yt);

end

function y = fxt(x,pwr)

 if pwr > 0

 y = x.^pwr;

 elseif pwr < 0

 y = 1./x.^abs(pwr);

 else

 y = log(x);

 end

end

function y = fxinv(x,pwr)

 if pwr > 0

 y = x.^(1/pwr);

 elseif pwr < 0

 y = x.^abs(pwr);

 else

 y = exp(x);

 end

end

Partition Model Selection` 6

Copyright © 2025 by Namir Clement Shammas

function [S,x,y]= Init(x,y,xlow,xstep,xhi)

 [rows,cols] = size(x);

 S.N = rows;

 S.V = cols;

 S.B = 4;

 m = S.B+1;

 delta = fix(S.N/m);

 S.Blow(1) = 1;

 S.Bhi(1) = 2*delta;

 S.Blow(2) = 2*delta+1;

 S.Bhi(2) = 3*delta;

 S.Blow(3) = 3*delta+1;

 S.Bhi(3) = 4*delta;

 S.Blow(4) = 4*delta+1;

 S.Bhi(4) = S.N;

 % shuffle array

 idx = randperm(S.N);

 x = x(idx,:);

 y = y(idx);

 S.sMdlX = "X = [fxt(x(:,1),px1)];";

 S.sMdlY = "yt = fxt(y,py);";

 S.sEvalX = "yhat=cr(1)+cr(2)*fxt(x(:,1),px1);";

 S.sEvalY = "yhat = fxinv(yhat,1/py);";

 % count the total number of models

 count=0;

 for py=xlow(S.V+1):xstep(S.V+1):xhi(S.V+1)

 for px1=xlow(1):xstep(1):xhi(1)

 count=count+1;

 end

 end

 S.M = count;

 S.pwrMat = zeros(S.M,S.V+1);

 S.stats= zeros(S.M,S.V+2);

 i=0;

 for py=xlow(S.V+1):xstep(S.V+1):xhi(S.V+1)

 for px1=xlow(1):xstep(1):xhi(1)

 i=i+1;

 S.pwrMat(i,1:S.V+1)=[py,px1];

 % next struct maps rc(1) to rc(4) and RsqrAdj

 S.stats(i,1:S.V+2) = [0,0,0];

 end

 end

 % Note use S.Bin(1,) to store the average values

 % of S.Bin(2,) and up.

 S.Bin = zeros(S.B,S.M);

end

The function embr1() performs the calculations for the model in equation (4). The

function has the following input parameters:

• The parameter xdata is a single column vector that contains all the data for

the independent variable. In the case of multiple independent variables,

Partition Model Selection` 7

Copyright © 2025 by Namir Clement Shammas

xdata is a matrix where each column stores values for a specific independent

variable.

• The parameter ydata is a single column vector that contains all the data for

the dependent variable.

• The parameter xlow is a single row vector that contains all the initial

powers. The first value belongs to the dependent variable. The second value

belongs to the independent variable. In the case of multiple independent

variables, the second value belongs to the first independent variable, the

third value belongs to the second independent variable, and so on.

• The parameter xstep is a single row vector that contains all the power

increment values. The first value belongs to the dependent variable. The

second value belongs to the independent variable. In the case of multiple

independent variables, the second value belongs to the first independent

variable, the third value belongs to the second independent variable, and so

on.

• The parameter xhi is a single row vector that contains all the final powers.

The first value belongs to the dependent variable. The second value belongs

to the independent variable. In the case of multiple independent variables,

the second value belongs to the first independent variable, the third value

belongs to the second independent variable, and so on.

The function has the following output parameters:

• The parameter bestR2 contains the adjusted R-square for the best model.

• The parameter bestMIdx contains the index of the best model.

• The parameter bestPwrs is an array that contains the powers of the best

model. The first value belongs to the dependent variable. The second value

belongs to the independent variable. In the case of multiple independent

variables, the second value belongs to the first independent variable, the

third value belongs to the second independent variable, and so on.

• The parameter bestCoeffs is the array of regression coefficients for the best

model. The first value is the intercept. The second value is the slope. In the

case of multiple independent variables, the second value is the slope of the

first independent variable, the third value is the slope of the second

independent variable, and so on.

• The parameter mdlBest contains the object for the best model.

• The parameter mdlAll contains the object for the model that processes all the

regression data.

Partition Model Selection` 8

Copyright © 2025 by Namir Clement Shammas

The function embr1() calls the local function Init() to initialize the data by

transforming the regression variables and initializing the index ranges that define

the main bin and the test bins. The parameters for function Init() are:

• The parameter x is a single column vector that contains all the data for the

independent variable. In the case of multiple independent variables, x is a

matrix where each column has data for a specific independent variable.

• The parameter y is a single column vector that contains all of the data for the

dependent variable.

• The parameter xlow is a single row vector that contains all the initial

powers. The first value belongs to the dependent variable. The second value

belongs to the independent variable. In the case of multiple independent

variables, the second value belongs to the first independent variable, the

third value belongs to the second independent variable, and so on.

• The parameter xstep is a single row vector that contains all the power

increment values. The first value belongs to the dependent variable. The

second value belongs to the independent variable. In the case of multiple

independent variables, the second value belongs to the first independent

variable, the third value belongs to the second independent variable, and so

on.

• The parameter xhi is a single row vector that contains all the final powers.

The first value belongs to the dependent variable. The second value belongs

to the independent variable. In the case of multiple independent variables,

the second value belongs to the first independent variable, the third value

belongs to the second independent variable, and so on.
\

The function Init() has the following output parameters:

• The parameter x is a single column vector that contains all the data for the

independent variable. In the case of multiple independent variables, x is a

matrix where each column has data for a specific independent variable.

• The parameter y is a single column vector that contains all the data for the

dependent variable.

• The structure S that contains the following information:

o The fields N, V, and B store the number of data points, number of

independent variables, and number of bins, respectively.

o Arrays Blow and Bhi store the ranges for the indices that define the

various bins of data.

Partition Model Selection` 9

Copyright © 2025 by Namir Clement Shammas

o The strings sMdlX and sMdlY store the transformations of x and y

data.

o The strings sEvalX and sEvalY are used to calculate projected y

values and their inverse transformation, respectively.

o The matrix pwrMat stores the powers used for each regression model.

o The matrix stats stores the regression coefficient for each regression

model.

o The matrix Bin stores the array of adjusted R-square values.

There are also the helper functions fxt() and fxinv(). The first transforms data

based on the supplied power value. The second function performs the inverse

transformation, based on the power value.

After calling the function Init(), the function embr1() performs the following tasks:

• Initialize the local arrays x and y to store the data for the main bin, from

parameters xdata and ydata, respectively.

• Set the best adjusted R-square value to 0.

• Use a loop to iterate over each regression model:

o Obtain the powers used for transforming the data from matrix

S.pwrMat and store the powers in variables py and px1. In the case of

multiple independent variables, the powers are stored in variables px1,

px2, and so on.

o Use the MATLAB function eval() to evaluate strings S.sMdlX and

S.sMdlY. This step transforms the x and y data using the powers

stored in variables py and px1. In the case of multiple independent

variables, the powers are stored in variables px1, px2, and so on. This

task ends up storing the independent variable(s) in matrix X and the

dependent variable in array yt.

o Invoke the MATLAB function fitlm() to calculate the regression

model and store it in variable mdl. The arguments for calling function

fitlm() are variables X and yt.

o Store the adjusted R-square value of the model in variable r2a.

o Validate the value in variable r2a and set it to 0 if it is Nan, or Inf, or

outside the interval (0, 1).

o Test if r2a is greater than bestR2a. If it is, then update bestR2a, the

best model (stored in variable bestMdl), and the best array of powers

(stored in variable bestpArr).

Partition Model Selection` 10

Copyright © 2025 by Namir Clement Shammas

o Store the regression coefficient and the adjusted R-square of the

current model in matrix S.stats. The first column stores the intercept

values. The second column stores the slope values. The third column

stores the adjusted R-square values. In the case of multiple

independent variables, the slopes for variables appear in the second

column to the column before last. The last column stores the adjusted

R-square values.

• Display the regression results and ANOVA table for the main bin of data.

• Use a loop to iterate over the test bins:

o Store the xdata and ydata for the current bin in variables x and y,

respectively.

o Use a loop for each regression model:

▪ Obtain the powers for the current model from matrix S.pwrMat

and store them in variables py and px1.

▪ Copy the regression coefficients of the current model from

matrix S.stats into array cr.

▪ Use the MATLAB function eval() with strings S.sEvalX and

S.sEvalY to calculate the projected values of y.

▪ Calculate (and validate) the value of the adjusted R-square

based on the projected values of y and those in the current bin.

▪ Store adjusted R-square value in matrix S.Bin.

▪ Accumulate the values of of the adjusted R-square in row

S.Bin(1,i).

o Obtain the best model in the current bin and store that information in

variables bestR2 and bestMIdx. Also store the powers for the best

model in variable bestPwrs.

o Calculate the regression model for the data in the main bin.

Test Program for Function ebrm1()
This section tests a simple model of Y = 5 + 2 * X. The following listings contains

the code for the test program:

clc

clear all

n=1250;

xdata=zeros(n,1);

ydata=zeros(n,1);

for i=1:n

Partition Model Selection` 11

Copyright © 2025 by Namir Clement Shammas

 z = 1;

 for j=1:1

 z = z + 10;

 xdata(i,j) = 1+rand*z;

 end

 ydata(i) = 5 + 2 * xdata(i,1);

end

[bestR2,bestMIdx,bestPwrs,bestCoeffs,mdlBest,mdlAll] = ...

 ebrm1(xdata,ydata,zeros(1,2),0.5+zeros(1,2),...

 4+zeros(1,2))

fprintf("Regression ANOVA table for best model\n")

anova(mdlBest,"summary")

fprintf("Regression ANOVA table for ALL data\n")

anova(mdlAll,"summary")

% save variables for future use

save("test11.mat", "bestR2","bestPwrs", ...

 "bestCoeffs","mdlBest","mdlAll")

The test program performs the following tasks:

• Sets the number of data points to 1250. This value ends up assigning 500

points to the main bin, and 250 points to each test bin. These numbers are

based on the fact that function ebrm1() uses three test bins.

• Create the arrays xdata and ydata and assign random values to xdata.

Calculate the values for ydata using ydata(i) = 5 + 2 * xdata(i,1).

• Call function ebrm1() and supply the following arguments:

o The array xdata and ydata supply the regression data.

o The array zeros(1, 2) supplies zeroes as the lower limits for the

powers of both Y and X.

o The array 0.5+zeros(1, 2) supplies 0.5 as the increments for the

powers of both Y and X.

o The array 4+zeros(1, 2) supplies 4 as the upper limits for the powers

of both Y and X.

• Display the output parameters bestR2, bestMIdx, bestPwrs, bestCoeffs,

mdlBest, and mdlAll.

• Display the regression ANOVA table for the best model.

• Display the regression ANOVA table for the model mdlAll.

• Save the output parameters to a .mat file for future use.

I will present the output of the test program piecewise. Ther first set of output lines

are:

Please wait

for Bin 1

Best powers: 1.000000, 1.000000,

Best Model:

Partition Model Selection` 12

Copyright © 2025 by Namir Clement Shammas

bestMdl =

Linear regression model:

 y ~ 1 + x1

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ __________ __________ ______

 (Intercept) 5 2.4455e-08 2.0446e+08 0

 x1 2 3.4681e-09 5.7669e+08 0

Number of observations: 500, Error degrees of freedom: 498

Root Mean Squared Error: 2.42e-07

R-squared: 1, Adjusted R-Squared: 1

F-statistic vs. constant model: Inf, p-value = 0

ans =

 3×5 table

 SumSq DF MeanSq F pValue

 _____ ___ ______ ___ ______

 Total 19436 499 38.949

 Model 19436 1 19436 Inf 0

 Residual 0 498 0

Finished calculations with Bin 1

The above output indicates that the best powers for Y and X are 1 and 1. This is the

linear relationship coded in the test program. The output shows the correct values

of 5 for the intercept, and 2 for the slope.

The second part of the output is:

Bin # 2

Best R2adj = 1.000000

Best model # 21

Powers: 1.000000, 1.000000,

Bin # 3

Best R2adj = 1.000000

Best model # 21

Powers: 1.000000, 1.000000,

Bin # 4

Best R2adj = 1.000000

Best model # 21

Powers: 1.000000, 1.000000,

Partition Model Selection` 13

Copyright © 2025 by Namir Clement Shammas

The output for bins 2, 3, and 4 shows that the best powers belong to the linear

relationship between variables X and Y. These calculations are based on the best

model obtained in the main bin—Y=5+2*X.

The third output part shows the results for the best model:

Using data in ALL bins -----------

bestR2 =

 1

bestMIdx =

 21

bestPwrs =

 1 1

bestCoeffs =

 5.0000 2.0000

mdlBest =

Linear regression model:

 y ~ 1 + x1

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ __________ __________ ______

 (Intercept) 5 3.4555e-08 1.4469e+08 0

 x1 2 4.8036e-09 4.1635e+08 0

Number of observations: 500, Error degrees of freedom: 498

Root Mean Squared Error: 3.42e-07

R-squared: 1, Adjusted R-Squared: 1

F-statistic vs. constant model: 1.55e+33, p-value = 0

And finally, the output for the regression using all of the data is:

mdlAll =

Linear regression model:

 y ~ 1 + x1

Partition Model Selection` 14

Copyright © 2025 by Namir Clement Shammas

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ __ _____ ______

 (Intercept) 5 0 Inf 0

 x1 2 0 Inf 0

Number of observations: 1250, Error degrees of freedom: 1248

R-squared: 1, Adjusted R-Squared: 1

F-statistic vs. constant model: 2.53e+32, p-value = 0

Since the values of Y were error-free the various output segments agree that Y = 5

+ 2*X is the best model. If we inject small errors in the values of Y, the best model

would most likely still be the linear model. The values for the intercept and slope

would be close to 5 and 2, respectively.

Working with Errors in the Dependent Variable
The previous test code calculated values of Y using Y = 5 + 2*X. The regression

calculations were able to identify the model and calculate the exact values for the

regression coefficients. In this section, I present a test program that injects +/- 5%

error in the Y values.

The code for test program test1Err.m is:

clc

clear all

diary test1Err.txt

n=1250;

xdata=zeros(n,1);

ydata=zeros(n,1);

for i=1:n

 z = 1;

 for j=1:1

 z = z + 10;

 xdata(i,j) = 1+rand*z;

 end

 ydata(i) = 5 + 2 * xdata(i,1);

 ydata(i) = ydata(i)*(1+0.1*(rand-0.5));

end

[bestR2,bestMIdx,bestPwrs,bestCoeffs,mdlBest,mdlAll] = ...

 ebrm1(xdata,ydata,zeros(1,2),0.5+zeros(1,2),...

 4+zeros(1,2))

save("test11.mat", "bestR2","bestPwrs", ...

 "bestCoeffs","mdlBest","mdlAll")

diary off

The output (which varies between different runs) is:

Partition Model Selection` 15

Copyright © 2025 by Namir Clement Shammas

Please wait

for Bin 1

Best powers: 1.000000, 1.000000,

Best Model:

bestMdl =

Linear regression model:

 y ~ 1 + x1

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _________ ______ ___________

 (Intercept) 5.0449 0.058436 86.332 9.2973e-302

 x1 1.9973 0.0080331 248.64 0

Number of observations: 500, Error degrees of freedom: 498

Root Mean Squared Error: 0.56

R-squared: 0.992, Adjusted R-Squared: 0.992

F-statistic vs. constant model: 6.18e+04, p-value = 0

ans =

 3×5 table

 SumSq DF MeanSq F pValue

 ______ ___ _______ _____ ______

 Total 19546 499 39.17

 Model 19390 1 19390 61821 0

 Residual 156.19 498 0.31364

Finished calculations with Bin 1

Bin # 2

Best R2adj = 0.993258

Best model # 21

Powers: 1.000000, 1.000000,

Bin # 3

Best R2adj = 0.991390

Best model # 21

Powers: 1.000000, 1.000000,

Bin # 4

Best R2adj = 0.993555

Best model # 21

Powers: 1.000000, 1.000000,

Using data in ALL bins -----------

bestR2 =

 0.9927

Partition Model Selection` 16

Copyright © 2025 by Namir Clement Shammas

bestMIdx =

 21

bestPwrs =

 1 1

bestCoeffs =

 5.0449 1.9973

mdlBest =

Linear regression model:

 y ~ 1 + x1

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _________ ______ ___________

 (Intercept) 5.0449 0.058436 86.332 9.2973e-302

 x1 1.9973 0.0080331 248.64 0

Number of observations: 500, Error degrees of freedom: 498

Root Mean Squared Error: 0.56

R-squared: 0.992, Adjusted R-Squared: 0.992

F-statistic vs. constant model: 6.18e+04, p-value = 0

mdlAll =

Linear regression model:

 y ~ 1 + x1

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _________ ______ ______

 (Intercept) 5.0201 0.034975 143.54 0

 x1 1.9973 0.0049098 406.81 0

Number of observations: 1250, Error degrees of freedom: 1248

Root Mean Squared Error: 0.546

R-squared: 0.993, Adjusted R-Squared: 0.993

F-statistic vs. constant model: 1.65e+05, p-value = 0

The main bin and the test bins favor the linear model. The regression coefficients

are close to those of the error-free model.

Partition Model Selection` 17

Copyright © 2025 by Namir Clement Shammas

If you run the above code several times you may see that the main bin favors a

nonlinear model, and the test bins favor the linear model as obtained by the main

bin. The Partition bins favor the linear model.

When the test bins agree about the best model, that model is vindicated as being

the best. By contrast, when the test bins fail to be on the same proverbial page,

there is no true best model. This is often confirmed by the low values of the

adjusted R-square statistic. In this case, you may want to expand or shift the ranges

of powers for some or all the regression variables.

Testing Model with No Correlation between the Variables
This section looks at the extreme case, where the values of the variables X and Y

are random and uncorrelated—there is no model that describes a relationship

between X and Y.

The MATLAB code for testing this case appears below. Note the assignment rof

random values to the elements of array ydata.

clc

clear all

diary test1Err2.txt

n=1250;

xdata=zeros(n,1);

ydata=zeros(n,1);

for i=1:n

 z = 1;

 for j=1:1

 z = z + 10;

 xdata(i,j) = 1+rand*z;

 end

 ydata(i) = 50*rand;

end

[bestR2,bestMIdx,bestPwrs,bestCoeffs,mdlBest,mdlAll] = ...

 ebrm1(xdata,ydata,zeros(1,2),0.5+zeros(1,2),...

 4+zeros(1,2))

save("test13.mat", "bestR2","bestPwrs", ...

 "bestCoeffs","mdlBest","mdlAll")

diary off

A sample output from the above test program is:

Please wait

for Bin 1

Partition Model Selection` 18

Copyright © 2025 by Namir Clement Shammas

Best powers: 4.000000, 0.500000,

Best Model:

bestMdl =

Linear regression model:

 y ~ 1 + x1

Estimated Coefficients:

 Estimate SE tStat pValue

 __________ __________ ______ _________

 (Intercept) 9.1406e+05 2.8679e+05 3.1873 0.0015266

 x1 1.3098e+05 1.1141e+05 1.1756 0.24031

Number of observations: 500, Error degrees of freedom: 498

Root Mean Squared Error: 1.68e+06

R-squared: 0.00277, Adjusted R-Squared: 0.000765

F-statistic vs. constant model: 1.38, p-value = 0.24

ans =

 3×5 table

 SumSq DF MeanSq F pValue

 __________ ___ __________ ______ _______

 Total 1.4102e+15 499 2.8261e+12

 Model 3.9029e+12 1 3.9029e+12 1.3821 0.24031

 Residual 1.4063e+15 498 2.8239e+12

Finished calculations with Bin 1

Bin # 2

Best R2adj = 0.000000

Best model # 1

Powers: 0.000000, 0.000000,

Bin # 3

Best R2adj = 0.000000

Best model # 1

Powers: 0.000000, 0.000000,

Bin # 4

Best R2adj = 0.000000

Best model # 1

Powers: 0.000000, 0.000000,

Using data in ALL bins -----------

bestR2 =

 0

bestMIdx =

Partition Model Selection` 19

Copyright © 2025 by Namir Clement Shammas

 1

bestPwrs =

 0 0

bestCoeffs =

 2.9141 0.0107

mdlBest =

Linear regression model:

 y ~ 1 + x1

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ ________ _______ __________

 (Intercept) 2.9141 0.13051 22.328 4.8939e-77

 x1 0.010727 0.070927 0.15124 0.87985

Number of observations: 500, Error degrees of freedom: 498

Root Mean Squared Error: 0.984

R-squared: 4.59e-05, Adjusted R-Squared: -0.00196

F-statistic vs. constant model: 0.0229, p-value = 0.88

mdlAll =

Linear regression model:

 y ~ 1 + x1

Estimated Coefficients:

 Estimate SE tStat pValue

 _________ ________ ________ ___________

 (Intercept) 2.987 0.07771 38.438 6.3822e-214

 x1 -0.021711 0.042768 -0.50765 0.61179

Number of observations: 1250, Error degrees of freedom: 1248

Root Mean Squared Error: 0.938

R-squared: 0.000206, Adjusted R-Squared: -0.000595

F-statistic vs. constant model: 0.258, p-value = 0.612

The main bin favors a nonlinear model, while the test bins favor the power (log-

log) models. The adjusted R-square values are very low (and some are even

Partition Model Selection` 20

Copyright © 2025 by Namir Clement Shammas

negative) to indicate that there isn’t any correlation between the regression

variables.

Working with Relatively Small Data Sets
The test code in the previous section worked with 1250 data points. What if you

have, say, 100 data points or even less? Using multiple bins with non-overlapping

data may not work well since each bin will have relatively a small number of data

points. In this section we look at another approach. Here, each bin has 80% of the

shuffled data. So, when we move from one bin to another, the models obtained

from the first bin will encounter many data points they have already processed in

the first bin.

The scheme that I described above can also be used with large number of data

points. This option is all yours!

Here is the code for the MATLAB function ebrm1Small():

function [bestR2,bestMIdx,bestPwrs,bestCoeffs,mdlBest,mdlAll] ...

 = ebrm1Small(xdata,ydata,xlow,xstep,xhi)

 % handles relatively small data sets

 warning("off")

 fprintf("Please wait\n");

 [S,xdata,ydata]= Init(xdata,ydata,xlow,xstep,xhi);

 % shuffle array

 idx = randperm(S.N);

 x = xdata(idx,:);

 y = ydata(idx);

 dSize = fix(0.8*S.N);

 x = x(1:dSize,:);

 y = y(1:dSize);

 bestR2a = 0;

 for i=1:S.M

 pArr = S.pwrMat(i,1:S.V+1);

 py = pArr(1);

 px1 = pArr(2);

 eval(S.sMdlX);

 eval(S.sMdlY);

 mdl = fitlm(X,yt);

 r2a = mdl.Rsquared.Adjusted;

 if isnan(r2a) || isinf(r2a) || r2a < 0 || r2a > 1

 r2a = 0;

 end

 if bestR2a < r2a

 bestR2a = r2a;

 bestMdl = mdl;

 bestpArr = pArr;

 end

Partition Model Selection` 21

Copyright © 2025 by Namir Clement Shammas

 S.stats(i,1:S.V+2) = ...

 [mdl.Coefficients{1,1}, ...

 mdl.Coefficients{2,1}, ...

 r2a];

 end

 fprintf("for Bin 1\nBest powers: ")

 fprintf("%f, ", bestpArr);

 fprintf("\nBest Model:\n")

 bestMdl

 anova(bestMdl,"summary")

 fprintf("Finished calculations with Bin 1\n\n")

 cr = size(S.V+1,1);

 for iBin=2:S.B

 % shuffle array

 idx = randperm(S.N);

 x = xdata(idx,:);

 y = ydata(idx);

 x = x(1:dSize,:);

 y = y(1:dSize);

 for i=1:S.M

 pArr = S.pwrMat(i,1:S.V+1);

 py = pArr(1);

 px1 = pArr(2);

 for k=1:S.V+1

 cr(k) = S.stats(i,k);

 end

 eval(S.sEvalX);

 eval(S.sEvalY);

 % yhat=yhat';

 e = y-yhat;

 SSres = sum(dot(e,e));

 ymean = mean(y);

 e = y-ymean;

 SStot = sum(dot(e,e));

 r2 = max(0,1 - SSres/SStot);

 if r2 > 0

 r2adj = 1 - (1-r2)*(S.N-1)/(S.N - S.V - 1);

 else

 r2adj = 0;

 end

 S.Bin(iBin,i) = r2adj;

 S.Bin(1,i) = S.Bin(1,i) + S.Bin(iBin,i);

 end

 [bestR2,bestMIdx] = max(S.Bin(iBin,:));

 bestPwrs = S.pwrMat(bestMIdx,:);

 fprintf("Bin # %d\n", iBin)

 fprintf("Best R2adj = %f\n", bestR2)

 fprintf("Best model # %d\n", bestMIdx)

 fprintf("Powers: ")

 fprintf(" %f, ", bestPwrs)

 fprintf("\n")

 end

 fprintf("\n\n")

 S.Bin(1,:) = S.Bin(1,:)/(S.B-1);

 [bestR2,bestMIdx] = max(S.Bin(1,:));

Partition Model Selection` 22

Copyright © 2025 by Namir Clement Shammas

 bestPwrs = S.pwrMat(bestMIdx,:);

 bestCoeffs = S.stats(bestMIdx,1:S.V+1);

 x = xdata(1:dSize,:);

 y = ydata(1:dSize);

 py = bestPwrs(1);

 px1 = bestPwrs(2);

 eval(S.sMdlX);

 eval(S.sMdlY);

 mdlBest = fitlm(X,yt);

 fprintf("Using data in ALL bins -----------\n")

 x = xdata;

 y = ydata;

 eval(S.sMdlX);

 eval(S.sMdlY);

 mdlAll = fitlm(X,yt);

end

function y = fxt(x,pwr)

 if pwr > 0

 y = x.^pwr;

 elseif pwr < 0

 y = 1./x.^abs(pwr);

 else

 y = log(x);

 end

end

function y = fxinv(x,pwr)

 if pwr > 0

 y = x.^(1/pwr);

 elseif pwr < 0

 y = x.^abs(pwr);

 else

 y = exp(x);

 end

end

function [S,x,y]= Init(x,y,xlow,xstep,xhi)

 [rows,cols] = size(x);

 S.N = rows;

 S.V = cols;

 S.B = 4;

 S.sMdlX = "X = [fxt(x(:,1),px1)];";

 S.sMdlY = "yt = fxt(y,py);";

 S.sEvalX = "yhat=cr(1)+cr(2)*fxt(x(:,1),px1);";

 S.sEvalY = "yhat = fxinv(yhat,1/py);";

 % count the total number of models

 count=0;

 for py=xlow(S.V+1):xstep(S.V+1):xhi(S.V+1)

 for px1=xlow(1):xstep(1):xhi(1)

 count=count+1;

 end

 end

 S.M = count;

Partition Model Selection` 23

Copyright © 2025 by Namir Clement Shammas

 S.pwrMat = zeros(S.M,S.V+1);

 S.stats= zeros(S.M,S.V+2);

 i=0;

 for py=xlow(S.V+1):xstep(S.V+1):xhi(S.V+1)

 for px1=xlow(1):xstep(1):xhi(1)

 i=i+1;

 S.pwrMat(i,1:S.V+1)=[py,px1];

 % next struct maps rc(1) to rc(4) and RsqrAdj

 S.stats(i,1:S.V+2) = [0,0,0];

 end

 end

 % Note use S.Bin(1,) to store the average values

 % of S.Bin(2,) and up.

 S.Bin = zeros(S.B,S.M);

end

The above function has the same input and output parameters as function ebrm1().

The difference between the two functions is the internal code. The above function

has the following changes:

• The arrays S.Blow and S.Bhi have been removed as they are no longer

needed, since the function uses one bin.

• Each bin has 80% random elements from the re-shuffled main data arrays

xdata and ydata.

The accompanying test program, test1Small.m, is:

clc

clear all

diary test1Small.txt

n=100;

xdata=zeros(n,1);

ydata=zeros(n,1);

for i=1:n

 z = 1;

 for j=1:1

 z = z + 10;

 xdata(i,j) = 1+rand*z;

 end

 ydata(i) = 5 + 2 * xdata(i,1);

end

[bestR2,bestMIdx,bestPwrs,bestCoeffs,mdlBest,mdlAll] = ...

 ebrm1Small(xdata,ydata,zeros(1,2),0.5+zeros(1,2),...

 4+zeros(1,2))

save("test11Small.mat", "bestR2","bestPwrs", ...

 "bestCoeffs","mdlBest","mdlAll")

diary off

Notice that the above test program works with 100 data points. It calls function

ebrm1Small(). The output is (which agrees with the previous output):

Partition Model Selection` 24

Copyright © 2025 by Namir Clement Shammas

Please wait

for Bin 1

Best powers: 1.000000, 1.000000,

Best Model:

bestMdl =

Linear regression model:

 y ~ 1 + x1

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ __________ __________ ______

 (Intercept) 5 5.9575e-08 8.3928e+07 0

 x1 2 7.6567e-09 2.6121e+08 0

Number of observations: 80, Error degrees of freedom: 78

Root Mean Squared Error: 2.16e-07

R-squared: 1, Adjusted R-Squared: 1

F-statistic vs. constant model: 4.63e+33, p-value = 0

ans =

 3×5 table

 SumSq DF MeanSq F pValue

 __________ __ __________ __________ ______

 Total 3182.3 79 40.282

 Model 3182.3 1 3182.3 4.6273e+33 0

 Residual 5.3643e-29 78 6.8772e-31

Finished calculations with Bin 1

Bin # 2

Best R2adj = 1.000000

Best model # 21

Powers: 1.000000, 1.000000,

Bin # 3

Best R2adj = 1.000000

Best model # 21

Powers: 1.000000, 1.000000,

Bin # 4

Best R2adj = 1.000000

Best model # 21

Powers: 1.000000, 1.000000,

Using data in ALL bins -----------

bestR2 =

 1

Partition Model Selection` 25

Copyright © 2025 by Namir Clement Shammas

bestMIdx =

 21

bestPwrs =

 1 1

bestCoeffs =

 5.0000 2.0000

mdlBest =

Linear regression model:

 y ~ 1 + x1

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ __ _____ ______

 (Intercept) 5 0 Inf 0

 x1 2 0 Inf 0

Number of observations: 80, Error degrees of freedom: 78

R-squared: 1, Adjusted R-Squared: 1

F-statistic vs. constant model: 3.81e+31, p-value = 0

mdlAll =

Linear regression model:

 y ~ 1 + x1

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ __ _____ ______

 (Intercept) 5 0 Inf 0

 x1 2 0 Inf 0

Number of observations: 100, Error degrees of freedom: 98

R-squared: 1, Adjusted R-Squared: 1

Partition Model Selection` 26

Copyright © 2025 by Namir Clement Shammas

Models for Heteronomials of Order Two and Up
The study includes versions of ebrm1 that work with heteronomials of orders 2 to

5. The code for these functions is very similar to that of ebrm1. Of course, since

these functions have two or more independent variables, the code has expanded

parts and bigger arrays/matrices to handle the additional variables.

Readers may ask if they can use the same independent variable in two terms of a

regression model. The answer is yes, if each occurrence of that independent

variable has power ranges that DO NOT OVERLAP! The matrix xdata would need

two columns with the same data. Of course, there is no guarantee that such an

approach would yield meaningful results, but one is free to experiment.

Note that the test programs write a copy of the console output to diary files (with

.txt extensions). These files contain HTML tags and . You can

delete these tags to get a better view of the text files.

The Zip File
You will find the code for the various versions of the ebrm functions, their test

programs, and sample output in the ZIP file for this project. The ZIP file contains

the PDF version of the document, and the files listed in the next table.

Number of Independent Variables Files

1 ebrm1.m

test1.m

test1.txt

test1Err.m

test1Err.txt

test1Err2.m

test1Err2.txt

test11.mat

test12.mat

test13.mat

ebrm1Small.m

test1Small.m

test1Small.txt

test11Small.mat

Partition Model Selection` 27

Copyright © 2025 by Namir Clement Shammas

Number of Independent Variables Files

2 ebrm2.m

test2.m

test2.txt

test21.mat

ebrm2Small.m

test2Small.m

test2Small.txt

test21Small.mat

3 ebrm3.m

test3.m

test3.txt

test31.mat

ebrm3Small.m

test3Small.m

test3Small.txt

test31Small.mat

4 ebrm4.m

test4.m

test4.txt

test41.mat

ebrm4Small.m

test4Small.m

test4Small.txt

test41Small.mat

5 ebrm5.m

test5.m

test5.txt

test51.mat

ebrm5Small.m

test5Small.m

test5Small.txt

test51Small.mat

