C# .Net Program to Find a Function Minimum

Using a Random Search Method

by Namir Shammas

The following program calculates the minimum point of a multi-variable function using random search method.

Click here to download a ZIP file containing the project files for this program.

The pseudo-code for this algorithm is:

Given

  1. The number of variables N
  2. The array of minimum values XLo
  3. The array of maximum values XHi
  4. The maximum number of iterations per variable per cycle

Method

  1. For I = 1 to N
  2. Let X(I) = Random number in range XLo(I) and XHi(I)
  3. Next I
  4. F0 = F(X)
  5. Copy Array X() into XBest()
  6. Let flag C = 0
  7. For I = 1 to N
  8. For J = 1 to M
  9. Let X(I) = Random number in range XLo(I) and XHi(I)
  10. F1 = F(X)
  11. If F1 > F0 then go to step 15
  12. F0 = F1
  13. Copy array X() into XBest()
  14. Let flag C = 1
  15. Next J
  16. Next I
  17. If flag C is 1 then go to step 6
  18. Display array XBest() and F0

The program prompts you to either use the predefined default input values or to enter the following:

1. Minimum value for each variable:.

2. Maximum value for each variable:.

3. The maximum number of iterations per cycle.

4. The function tolerance.

In case you choose the default input values, the program displays these values and proceeds to find the optimum point. In the case you select being prompted, the program displays the name of each input variable along with its default value. You can then either enter a new value or simply press Enter to use the default value. This approach allows you to quickly and efficiently change only a few input values if you so desire.

The program displays the following results:

1. The coordinates of the minimum value.

2. The minimum function value.

3. The number of iterations

Here is a sample session to find the minimum of function:

f(x) = x1 - x2 + 2 * x1 ^ 2 + 2 * x1 * x2 + x2 ^ 2

Using the initial value of 0, range of (-5, 5) for each variable, and using a maximum number of 1000000 iterations and a function tolerance of 1e-7. Here is the sample console screen:

Here is the BASIC listing for the main module. The module contains several test functions:

using System.Diagnostics;
using System.Data;
using System.Collections;
using Microsoft.VisualBasic;
using System.Collections.Generic;
using System;

namespace Optim_RandomSearch1
{
	sealed class Module1
	{
		
		static public void Main()
		{
			int nNumVars = 2;
			double[] fX = new double[] { 0, 0 };
			double[] fParam = new double[] { 0, 0 };
			double[] fXlo = new double[] { - 5, - 5 };
			double[] fXHi = new double[] { 5, 5 };
			double fEpsFx = 0.0000001;
			int nIter = 0;
			int nMaxIter = 1000000;
			int i;
			double fBestF;
			string sAnswer;
			CRandomSearch1 oOpt;
			MyFxDelegate MyFx = new MyFxDelegate(Fx1);
			SayFxDelegate SayFx = new SayFxDelegate(SayFx1);
			
			oOpt = new CRandomSearch1();
			
			Console.WriteLine("Random Search (pure random) Optimization");
			Console.WriteLine("Finding the minimum of function:");
			Console.WriteLine(SayFx());
			Console.Write("Use default input values? (Y/N) ");
			sAnswer = Console.ReadLine();
			if (sAnswer.ToUpper() == "Y")
			{
				for (i = 0; i < nNumVars; i++)
				{
					Console.WriteLine("X({0}) = {1}", i + 1, fX[i]);
					Console.WriteLine("X Low({0}) = {1}", i + 1, fXlo[i]);
					Console.WriteLine("X High({0}) = {1}", i + 1, fXHi[i]);
				}
				Console.WriteLine("Maximum iterations = {0}", nMaxIter);
				Console.WriteLine("Function tolerance = {0}", fEpsFx);
			}
			else
			{
				for (i = 0; i < nNumVars; i++)
				{
					fX[i] = GetIndexedDblInput("X", i + 1, fX[i]);
					fXlo[i] = GetIndexedDblInput("X low", i + 1, fXlo[i]);
					fXHi[i] = GetIndexedDblInput("X high", i + 1, fXHi[i]);
				}
				nMaxIter = GetIntInput("Maximum iterations", nMaxIter);
				fEpsFx = GetDblInput("Function tolerance", fEpsFx);
			}
			
			Console.WriteLine("******** FINAL RESULTS *************");
			fBestF = oOpt.CalcOptim(nNumVars, ref fX, ref fParam, ref fXlo, ref fXHi, nMaxIter, fEpsFx, ref nIter, MyFx);
			Console.WriteLine("Optimum at");
			for (i = 0; i < nNumVars; i++)
			{
				Console.WriteLine("X({0}) = {1}", i + 1, fX[i]);
			}
			Console.WriteLine("Function value = {0}", fBestF);
			Console.WriteLine("Number of iterations = {0}", nIter);
			Console.WriteLine();
			Console.Write("Press Enter to end the program");
			Console.ReadLine();
		}
		
		static public double GetDblInput(string sPrompt, double fDefInput)
		{
			string sInput;
			
			Console.Write("{0}? ({1}): ", sPrompt, fDefInput);
			sInput = Console.ReadLine();
			if (sInput.Trim(null).Length > 0)
			{
				return double.Parse(sInput);
			}
			else
			{
				return fDefInput;
			}
		}
		
		static public int GetIntInput(string sPrompt, int nDefInput)
		{
			string sInput;
			
			Console.Write("{0}? ({1}): ", sPrompt, nDefInput);
			sInput = Console.ReadLine();
			if (sInput.Trim(null).Length > 0)
			{
				return  (int) double.Parse(sInput);
			}
			else
			{
				return nDefInput;
			}
		}
		
		static public double GetIndexedDblInput(string sPrompt, int nIndex, double fDefInput)
		{
			string sInput;
			
			Console.Write("{0}({1})? ({2}): ", sPrompt, nIndex, fDefInput);
			sInput = Console.ReadLine();
			if (sInput.Trim(null).Length > 0)
			{
				return double.Parse(sInput);
			}
			else
			{
				return fDefInput;
			}
		}
		
		static public string SayFx1()
		{
			return "F(X) = 10 + (X(1) - 2) ^ 2 + (X(2) + 5) ^ 2";
		}
		
		static public double Fx1(int N, ref double[] X, ref double[] fParam)
		{
			return 10 + Math.Pow(X[0] - 2, 2) + Math.Pow(X[1] + 5, 2);
		}
		
		static public string SayFx2()
		{
			return "F(X) = 100 * (X(1) - X(2) ^ 2) ^ 2 + (X(2) - 1) ^ 2";
		}
		
		static public double Fx2(int N, ref double[] X, ref double[] fParam)
		{
            return Math.Pow(100 * (X[0] - X[1] * X[1]), 2) + Math.Pow((X[1] - 1), 2);
		}
		
		static public string SayFx3()
		{
			return "F(X) = X(1) - X(2) + 2 * X(1) ^ 2 + 2 * X(1) * X(2) + X(2) ^ 2";
		}
		
		static public double Fx3(int N, ref double[] X, ref double[] fParam)
		{
            return X[0] - X[1] + 2 * X[0] * X[0] + 2 * X[0] * X[1] + X[1] * X[1];
		}

	}
	
}

Notice that the user-defined functions have accompanying helper functions to display the mathematical expression of the function being optimized. For example, function Fx1 has the helper function SayFx1 to list the function optimized in Fx1. Please observe the following rules::

The program uses the following class to optimize the objective function:

using System.Diagnostics;
using System.Data;
using System.Collections;
using Microsoft.VisualBasic;
using System.Collections.Generic;
using System;

namespace Optim_RandomSearch1
{
	public delegate double MyFxDelegate(int nNumVars, ref double[] fX, ref double[] fParam);
	public delegate string SayFxDelegate();
	
	public class CRandomSearch1
	{
		public double CalcOptim(int nNumVars, ref double[] fX, ref double[] fParam, ref double[] fXLo, ref double[] fXHi, int nMaxIter, double EpsFx, ref int nIter, MyFxDelegate MyFx)
		{
			
			double F;
			double fBestF;
			double[] fBestX;
			double fLastBestF;
			int i;
            Random objRand = new Random(3);
			
			fBestX = new double[nNumVars];
			
			for (i = 0; i < nNumVars; i++)
			{
				fBestX[i] = fX[i];
			}
			// calculate and display function value at initial point
            fBestF = MyFx(nNumVars, ref fBestX, ref fParam);
			if (fBestF > 0)
			{
				fLastBestF = fBestF + 100;
			}
			else
			{
				fLastBestF = 100 - fBestF;
			}
			
			nIter = 0;
			do
			{
				nIter++;
				if (nIter > nMaxIter)
				{
					break;
				}
				// VBMath.Randomize(DateAndTime.Timer);
				for (i = 0; i < nNumVars; i++)
				{
                    fX[i] = fXLo[i] + objRand.NextDouble() * (fXHi[i] - fXLo[i]);
				}
                F = MyFx(nNumVars, ref fX, ref fParam);
				if (F < fBestF)
				{
					for (i = 0; i < nNumVars; i++)
					{
						fBestX[i] = fX[i];
					}
					fBestF = F;
					
					// test function value convergence
					if (Math.Abs(fBestF - fLastBestF) < EpsFx)
					{
						break;
					}
					fLastBestF = fBestF;
				}
			} while (true);
			
			return fBestF;
			
		}
	}
	
}

BACK

Copyright (c) Namir Shammas. All rights reserved.