The following program calculates the minimum point of a multi-variable function using the Hooke-Jeeves directional search method.
The function hookejeeves has the following input parameters:
The function generates the following output:
Here is a sample session to find the optimum for the following function:
y = 10 + (X(1) - 2)^2 + (X(2) + 5)^2
The above function resides in file fx1.m. The search for the optimum 2 variables has the initial guess of [0 0], initial step vector of [0.1 0.1] with a minimum step vector of [1e-5 1e-5]. The search employs a maximum of 1000 iterations and a function tolerance of 1e-7:
>> [X,BestF,Iters] = hookejeeves(2, [0 0], [.1 .1], [1e-5 1e-5], 1e-7, 1000, 'fx1')
X =
2.0000 -5.0000
BestF =
10
Iters =
15
Here is the MATLAB listing:
function y=fx1(X, N) y = 10 + (X(1) - 2)^2 + (X(2) + 5)^2; end function [X,BestF,Iters] = hookejeeves(N, X, StepSize, MinStepSize, Eps_Fx, MaxIter, myFx) % Function HOOKEJEEVS performs multivariate optimization using the % Hooke-Jeeves search method. % % Input % % N - number of variables % X - array of initial guesses % StepSize - array of search step sizes % MinStepSize - array of minimum step sizes % Eps_Fx - tolerance for difference in successive function values % MaxIter - maximum number of iterations % myFx - name of the optimized function % % Output % % X - array of optimized variables % BestF - function value at optimum % Iters - number of iterations % Xnew = X; BestF = feval(myFx, Xnew, N); LastBestF = 100 * BestF + 100; bGoOn = true; Iters = 0; while bGoOn Iters = Iters + 1; if Iters > MaxIter break; end X = Xnew; for i=1:N bMoved(i) = 0; bGoOn2 = true; while bGoOn2 xx = Xnew(i); Xnew(i) = xx + StepSize(i); F = feval(myFx, Xnew, N); if F < BestF BestF = F; bMoved(i) = 1; else Xnew(i) = xx - StepSize(i); F = feval(myFx, Xnew, N); if F < BestF BestF = F; bMoved(i) = 1; else Xnew(i) = xx; bGoOn2 = false; end end end end bMadeAnyMove = sum(bMoved); if bMadeAnyMove > 0 DeltaX = Xnew - X; lambda = 0.5; lambda = linsearch(X, N, lambda, DeltaX, myFx); Xnew = X + lambda * DeltaX; end BestF = feval(myFx, Xnew, N); % reduce the step size for the dimensions that had no moves for i=1:N if bMoved(i) == 0 StepSize(i) = StepSize(i) / 2; end end if abs(BestF - LastBestF) < Eps_Fx break end LastBest = BestF; bStop = true; for i=1:N if StepSize(i) >= MinStepSize(i) bStop = false; end end bGoOn = ~bStop; end function y = myFxEx(N, X, DeltaX, lambda, myFx) X = X + lambda * DeltaX; y = feval(myFx, X, N); % end function lambda = linsearch(X, N, lambda, D, myFx) MaxIt = 100; Toler = 0.000001; iter = 0; bGoOn = true; while bGoOn iter = iter + 1; if iter > MaxIt lambda = 0; break end h = 0.01 * (1 + abs(lambda)); f0 = myFxEx(N, X, D, lambda, myFx); fp = myFxEx(N, X, D, lambda+h, myFx); fm = myFxEx(N, X, D, lambda-h, myFx); deriv1 = (fp - fm) / 2 / h; deriv2 = (fp - 2 * f0 + fm) / h ^ 2; diff = deriv1 / deriv2; lambda = lambda - diff; if abs(diff) < Toler bGoOn = false; end end % end
Copyright (c) Namir Shammas. All rights reserved.