The following program uses the modified Newton's method to find the minimum of a function . The modification part performs a linear search on the calculated guess refinement. This search further improves the refined values for the optimum.
The function modnewton_opt has the following input parameters:
The function generates the following output:
Here is a sample session to find the optimum for the following function:
y = 10 + (X(1) - 2)^2 + (X(2) + 5)^2
The above function resides in file fx1.m. The search for the optimum 2 variables has the initial guess of [0 0]and a step tolerance vector of [1e-5 1e-5]. The search employs a maximum of 100 iterations and a gradient tolerance of 1e-7.
>> [X,F,Iters] = modnewton_opt(2, [0 0], 1e-7, [1e-5 1e-5], 100, 'fx1')
X =
2.0000 -5.0000
F =
10
Iters =
2
Here is the MATLAB listing:
function y=fx1(X, N) y = 10 + (X(1) - 2)^2 + (X(2) + 5)^2; end function [X,F,Iters] = modnewton_opt(N, X, gradToler, XToler, MaxIter, myFx) % Function MODNEWTON_OPT performs multivariate optimization using the % modified Newton's method. % % Input % % N - number of variables % X - array of initial guesses % gradToler - tolerance for the norm of the slopes % XToler - array of tolerance values for the variables' refinement % MaxIter - maximum number of iterations % myFx - name of the optimized function % % Output % % X - array of optimized variables % F - function value at optimum % Iters - number of iterations % bGoOn = true; Iters = 0; while bGoOn Iters = Iters + 1; if Iters > MaxIter break; end g = FirstDerivatives(X, N, myFx); fnorm = norm(g); if fnorm < gradToler break; end J = SecondDerivatives(X, N, myFx); DeltaX = g / J; lambda = 0; lambda = linsearch(X, N, lambda, DeltaX, myFx); X = X + lambda * DeltaX; bStop = true; for i=1:N if abs(lambda * DeltaX(i)) > XToler(i) bStop = false; end end bGoOn = ~bStop; end F = feval(myFx, X, N); % end function y = myFxEx(N, X, DeltaX, lambda, myFx) X = X + lambda * DeltaX; y = feval(myFx, X, N); % end function FirstDerivX = FirstDerivatives(X, N, myFx) for iVar=1:N xt = X(iVar); h = 0.01 * (1 + abs(xt)); X(iVar) = xt + h; fp = feval(myFx, X, N); X(iVar) = xt - h; fm = feval(myFx, X, N); X(iVar) = xt; FirstDerivX(iVar) = (fp - fm) / 2 / h; end % end function SecondDerivX = SecondDerivatives(X, N, myFx) for i=1:N for j=1:N % calculate second derivative? if i == j f0 = feval(myFx, X, N); xt = X(i); hx = 0.01 * (1 + abs(xt)); X(i) = xt + hx; fp = feval(myFx, X, N); X(i) = xt - hx; fm = feval(myFx, X, N); X(i) = xt; y = (fp - 2 * f0 + fm) / hx ^ 2; else xt = X(i); yt = X(j); hx = 0.01 * (1 + abs(xt)); hy = 0.01 * (1 + abs(yt)); % calculate fpp; X(i) = xt + hx; X(j) = yt + hy; fpp = feval(myFx, X, N); % calculate fmm; X(i) = xt - hx; X(j) = yt - hy; fmm = feval(myFx, X, N); % calculate fpm; X(i) = xt + hx; X(j) = yt - hy; fpm = feval(myFx, X, N); % calculate fmp X(i) = xt - hx; X(j) = yt + hy; fmp = feval(myFx, X, N); X(i) = xt; X(j) = yt; y = (fpp - fmp - fpm + fmm) / (4 * hx * hy); end SecondDerivX(i,j) = y; end end %end function lambda = linsearch(X, N, lambda, D, myFx) MaxIt = 100; Toler = 0.000001; iter = 0; bGoOn = true; while bGoOn iter = iter + 1; if iter > MaxIt lambda = 0; break end h = 0.01 * (1 + abs(lambda)); f0 = myFxEx(N, X, D, lambda, myFx); fp = myFxEx(N, X, D, lambda+h, myFx); fm = myFxEx(N, X, D, lambda-h, myFx); deriv1 = (fp - fm) / 2 / h; deriv2 = (fp - 2 * f0 + fm) / h ^ 2; diff = deriv1 / deriv2; lambda = lambda - diff; if abs(diff) < Toler bGoOn = false; end end % end
Copyright (c) Namir Shammas. All rights reserved.