The following program uses the Davidson-Fletcher-Powell (DFP) method to find the minimum of a function. This method is a quasi-Newton method. That is, the DFP algorithm is based on Newton's method but performs different calculations to update the guess refinements.
The program prompts you to enter for each variable (i.e. dimension):
1. The maximum number of iterations.
2. The tolerance for the minimized function,
3. The tolerance for the gradient.
4. The initial guesses for the optimum point for each variable.
5. The tolerance for the guess refinement for each variable.
The program displays intermediate values for the function and the variables. The program displays the following final results:
1. The coordinates of the minimum point.
2. The minimum function value.
3. The number of iterations
The current code finds the minimum for the following function:
f(x1,x2) = x1 - x2 + 2 * x1 ^ 2 + 2 * x1 * x2 + x2 ^ 2
Here is a sample session to solve for the optimum of the above function:
Here is the BASIC listing:
! Davidson-Fletcher-Powell Method (DFP) OPTION TYPO OPTION NOLET DECLARE NUMERIC MAX_VARS DECLARE NUMERIC N, I, EPSF, EPSG, fNorm, Lambda DECLARE NUMERIC Iter, MaxIter, F DECLARE NUMERIC bStop, bOK, boolRes, bTrue, bFalse Dim X(1), grad1(1,1), grad2(1,1), g(1,1), S(1,1) Dim d(1,1), Bmat(1,1), Mmat(1,1), Nmat(1,1) Dim MM1(1,1), MM2(1,1), MM3(1,1), MM4(1,1) Dim VV1(1,1), Toler(1) bTrue = 1 bFalse = 0 SUB CalcNorm(X(,), N, FNorm) LOCAL I FNorm = 0 For I = 1 To N FNorm = FNorm + X(I,1)^2 Next I FNorm = Sqr(FNorm) END SUB SUB MyFx(X(), N, Res) ! Res = 100 * (X(1) ^ 2 - X(2)) ^ 2 + (1 - X(1)) ^ 2 Res = X(1) - X(2) + 2 * X(1) ^ 2 + 2 * X(1) * X(2) + X(2) ^ 2 End SUB SUB FirstDeriv(N, X(), iVar, funRes) LOCAL Xt, h, Fp, Fm Xt = X(iVar) h = 0.01 * (1 + Abs(Xt)) X(iVar) = Xt + h CALL MyFx(X, N, Fp) X(iVar) = Xt - h CALL MyFx(X, N, Fm) X(iVar) = Xt funRes = (Fp - Fm) / 2 / h End SUB Sub GetFirstDerives(N, X(), FirstDerivX(,)) LOCAL I For I = 1 To N CALL FirstDeriv(N, X, I, FirstDerivX(I,1)) Next I End Sub SUB MyFxEx(N, X(), DeltaX(,), Lambda, funRes) LOCAL I, XX(1) !Dim XX() MAT REDIM XX(N) For I = 1 To N XX(I) = X(I) + Lambda * DeltaX(I,1) Next I CALL MyFx(XX, N, funRes) End SUB SUB LinSearch_DirectSearch(X(), N, Lambda, DeltaX(,), InitStep, MinStep, boolRes) LOCAL F1, F2 CALL MyFxEx(N, X, DeltaX, Lambda, F1) Do CALL MyFxEx(N, X, DeltaX, Lambda + InitStep, F2) If F2 < F1 Then F1 = F2 Lambda = Lambda + InitStep Else CALL MyFxEx(N, X, DeltaX, Lambda - InitStep, F2) If F2 < F1 Then F1 = F2 Lambda = Lambda - InitStep Else ! reduce search step size InitStep = InitStep / 10 End If End If Loop Until InitStep < MinStep boolRes = bTrue End SUB ! Davidson-Fletcher-Powell Method (DFP) MAX_VARS = 2 N = MAX_VARS MAT REDIM Toler(MAX_VARS) MAT REDIM X(MAX_VARS) MAT REDIM grad1(MAX_VARS,1) MAT REDIM grad2(MAX_VARS,1) MAT REDIM g(MAX_VARS,1) MAT REDIM S(MAX_VARS,1) MAT REDIM d(MAX_VARS,1) MAT REDIM Bmat(MAX_VARS, MAX_VARS) MAT REDIM Mmat(MAX_VARS, MAX_VARS) MAT REDIM Nmat(MAX_VARS, MAX_VARS) MAT REDIM MM1(MAX_VARS, 1) MAT REDIM MM2(MAX_VARS, MAX_VARS) MAT REDIM MM3(MAX_VARS, MAX_VARS) MAT REDIM MM4(MAX_VARS, MAX_VARS) MAT REDIM VV1(MAX_VARS,1) PRINT "Davidson-Fletcher-Powell Method (DFP)" INPUT PROMPT "Enter maximum number of iterations? ": MaxIter INPUT PROMPT "Enter function tolerance? ": EPSF INPUT PROMPT "Enter gradient tolerance? ": EPSG N = MAX_VARS For I = 1 To N PRINT "Enter value for X(";I;")"; INPUT X(I) PRINT "Enter tolerance value for X(";I;")"; INPUT Toler(I) Next I ! set matrix B as an indentity matrix MAT Bmat = IDN(MAX_VARS) Iter = 0 ! calculate initial gradient CALL GetFirstDerives(N, X, grad1) ! start main loop Do Iter = Iter + 1 If Iter > MaxIter Then PRINT "Reached iteration limits" Exit Do End If ! calcuate vector S() and reverse its sign MAT S = Bmat * grad1 MAT S = (-1) * S ! normailize vector S CALL CalcNorm(S, N, fNorm) MAT S = (1/fNorm) * S ! objML.NormalizeVect S Lambda = 0.1 CALL LinSearch_DirectSearch(X, N, Lambda, S, 0.1, 0.00001, boolRes) ! calculate optimum X() with the given Lambda MAT d = (Lambda) * S For I = 1 To N X(I) = X(I) + d(I,1) Next I ! get new gradient CALL GetFirstDerives(N, X, grad2) ! calculate vector g() and shift grad2() into grad1() MAT g = grad2 - grad1 MAT grad1 = grad2 ! test for convergence bStop = bTrue For I = 1 To N If Abs(d(I,1)) > Toler(I) Then bStop = bFalse Exit For End If Next I If bStop = bTrue Then PRINT "Exit due to values of Lambda * S()" PRINT "Lamda="; Lambda PRINT "Array S is:" For I = 1 To N PRINT "S(";I;")=";S(I,1);" "; Next I PRINT Exit Do End If ! exit if gradient is low CALL CalcNorm(g, N, fNorm) If fNorm < EPSG Then PRINT "Exit due to G Norm" PRINT "Norm=";fNorm Exit Do End If !------------------------------------------------- ! Start elaborate process to update matrix B ! ! First calculate matrix M (stored as Mmat) ! MM1 = S in matrix form MAT MM1 = S ! MM2 = S^T in matrix form MAT MM2 = TRN(S) ! MM3 = g in matrix form MAT MM3 = g ! Mmat = S * S^T MAT Mmat = MM1 * MM2 ! MM4 = S^T * g MAT MM4 = MM2 * MM3 ! calculate natrix M MAT Mmat = (Lambda / MM4(1,1)) * Mmat ! Calculate matrix N (stored as Nmat) ! VV1 = {B] g MAT VV1 = Bmat * g ! MM1 = VV1 in column matrix form ([B] g) MAT MM1 = VV1 ! MM2 = VV1 in Iter matrix form ([B] g)^T MAT MM2 = TRN(VV1) ! Nmat = ([B] g) * ([B] g)^T MAT Nmat = MM1 * MM2 ! MM1 = g^T MAT MM1 = TRN(g) ! MM2 = g MAT MM2 = g ! MM3 = g^T [B] MAT MM3 = MM1 * Bmat ! MM4 = g^T [B] g MAT MM4 = MM3 * MM2 ! calculate matrix N MAT Nmat = (-1/MM4(1,1)) * Nmat ! B = B + M MAT Bmat = Bmat + Mmat ! B = B + N MAT Bmat = Bmat + Nmat CALL MyFx(X, N, F) PRINT "F = ";F;" "; For I = 1 To N PRINT "X(";I;")=";X(I);" "; PRINT "g(";I;")=";g(I,1);" "; Next I PRINT Loop PRINT "********FINAL RESULTS**********" For I = 1 To N PRINT "X(";I;")=";X(I) Next I For I = 1 To N PRINT "Gradient(";I;")=";g(I,1) Next I CALL MyFx(X, N, F) PRINT "Function value = ";F PRINT "Iterations = ";Iter END
Copyright (c) Namir Shammas. All rights reserved.