The following program calculates the minimum point of a multi-variable function using the grid search method. This method performs a multi-dimensional grid search. The grid is defined by a multiple dimensions. Each dimension has a range of values. Each range is divided into a set of equal-value intervals. The multi-dimensional grid has a centroid which locates the optimum point. The search involves multiple passes. In each pass, the method local a node (point of intersection) with the least function value. This node becomes the new centroid and builds a smaller grid around it. Successive passes end up shrinking the multidimensional grid around the optimum.
Click here to download a ZIP file containing the project files for this program.
The program prompts you to either use the predefined default input values or to enter the following for each variable (i.e. dimension):
1. The values that define the lower and upper limits of a search range for a variable,
2. The number of divisions for a range.
3. The minimum range value, used to determine when to stop searching..
The program also asks you to enter the function tolerance. The program uses this value to possible stop iterating when successive best function values are close enough.
In case you choose the default input values, the program displays these values and proceeds to find the optimum point. In the case you select being prompted, the program displays the name of each input variable along with its default value. You can then either enter a new value or simply press Enter to use the default value. This approach allows you to quickly and efficiently change only a few input values if you so desire.
The program displays the following final results:
1. The coordinates of the minimum point.
2. The minimum function value.
3. The number of iterations
Here is a sample session to find the minimum of function:
f(x) = x1 - x2 + 2 * x1 ^ 2 + 2 * x1 * x2 + x2 ^ 2
Using, for each variable, the range of (-10, 10), initial range divisions of 4, minimum step size of 1e-5. The solution also uses a function tolerance of 1e-7. Here is the sample console screen:
Here is the listing for the main module. The module contains several test functions:
Module Module1 Sub Main() Dim nNumVars As Integer = 2 Dim fX() As Double = {0, 0} Dim fParam() As Double = {0, 0} Dim fXLo() As Double = {-10, -10} Dim fXHi() As Double = {10, 10} Dim nNumDiv() As Integer = {4, 4} Dim fMinDeltaX() As Double = {0.00001, 0.00001} Dim nIter As Integer = 0 Dim fEpsFx As Double = 0.0000001 Dim I As Integer Dim fBestF Dim sAnswer As String Dim oOpt As CGridSearch Dim MyFx As MyFxDelegate = AddressOf Fx3 Dim SayFx As SayFxDelegate = AddressOf SayFx3 oOpt = New CGridSearch Console.WriteLine("Grid Search Optimization") Console.WriteLine("Finding the minimum of function:") Console.WriteLine(SayFx()) Console.Write("Use default input values? (Y/N) ") sAnswer = Console.ReadLine() If sAnswer.ToUpper() = "Y" Then For I = 0 To nNumVars - 1 Console.WriteLine("X Low({0}) = {1}", I + 1, fXLo(I)) Console.WriteLine("X High ({0}) = {1}", I + 1, fXHi(I)) Console.WriteLine("Divisions({0}) = {1}", I + 1, nNumDiv(I)) Console.WriteLine("MinStepSize({0}) = {1}", I + 1, fMinDeltaX(I)) Next Console.WriteLine("Function tolerance = {0}", fEpsFx) Else For I = 0 To nNumVars - 1 fXLo(I) = GetIndexedDblInput("X low", I + 1, fXLo(I)) fXHi(I) = GetIndexedDblInput("X high", I + 1, fXHi(I)) nNumDiv(I) = GetIndexedIntInput("Number of divisions", I + 1, nNumDiv(I)) fMinDeltaX(I) = GetIndexedDblInput("Minimum step size", I + 1, fMinDeltaX(I)) Next fEpsFx = GetDblInput("Function tolerance", fEpsFx) End If Console.WriteLine("******** FINAL RESULTS *************") fBestF = oOpt.CalcOptim(nNumVars, fX, fParam, fXLo, fXHi, nNumDiv, fMinDeltaX, fEpsFx, nIter, MyFx) Console.WriteLine("Optimum at") For I = 0 To nNumVars - 1 Console.WriteLine("X({0}) = {1}", I + 1, fX(I)) Next Console.WriteLine("Function value = {0}", fBestF) Console.WriteLine("Number of iterations = {0}", nIter) Console.WriteLine() Console.Write("Press Enter to end the program ...") Console.ReadLine() End Sub Function GetDblInput(ByVal sPrompt As String, ByVal fDefInput As Double) As Double Dim sInput As String Console.Write("{0}? ({1}): ", sPrompt, fDefInput) sInput = Console.ReadLine() If sInput.Trim().Length > 0 Then Return Double.Parse(sInput) Else Return fDefInput End If End Function Function GetIntInput(ByVal sPrompt As String, ByVal nDefInput As Integer) As Integer Dim sInput As String Console.Write("{0}? ({1}): ", sPrompt, nDefInput) sInput = Console.ReadLine() If sInput.Trim().Length > 0 Then Return Double.Parse(sInput) Else Return nDefInput End If End Function Function GetIndexedDblInput(ByVal sPrompt As String, ByVal nIndex As Integer, ByVal fDefInput As Double) As Double Dim sInput As String Console.Write("{0}({1})? ({2}): ", sPrompt, nIndex, fDefInput) sInput = Console.ReadLine() If sInput.Trim().Length > 0 Then Return Double.Parse(sInput) Else Return fDefInput End If End Function Function GetIndexedIntInput(ByVal sPrompt As String, ByVal nIndex As Integer, ByVal nDefInput As Integer) As Integer Dim sInput As String Console.Write("{0}({1})? ({2}): ", sPrompt, nIndex, nDefInput) sInput = Console.ReadLine() If sInput.Trim().Length > 0 Then Return Double.Parse(sInput) Else Return nDefInput End If End Function Function SayFx1() As String Return "F(X) = 10 + (X(1) - 2) ^ 2 + (X(2) + 5) ^ 2" End Function Function Fx1(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double Return 10 + (X(0) - 2) ^ 2 + (X(1) + 5) ^ 2 End Function Function SayFx2() As String Return "F(X) = 100 * (X(1) - X(2) ^ 2) ^ 2 + (X(2) - 1) ^ 2" End Function Function Fx2(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double Return 100 * (X(0) - X(1) ^ 2) ^ 2 + (X(1) - 1) ^ 2 End Function Function SayFx3() As String Return "F(X) = X(1) - X(2) + 2 * X(1) ^ 2 + 2 * X(1) * X(2) + X(2) ^ 2" End Function Function Fx3(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double Return X(0) - X(1) + 2 * X(0) ^ 2 + 2 * X(0) * X(1) + X(1) ^ 2 End Function End Module
Notice that the user-defined functions have accompanying helper functions to display the mathematical expression of the function being optimized. For example, function Fx1 has the helper function SayFx1 to list the function optimized in Fx1. Please observe the following rules::
The program uses the following class to optimize the objective function:
Public Delegate Function MyFxDelegate(ByVal nNumVars As Integer, ByRef fX() As Double, ByRef fParam() As Double) As Double Public Delegate Function SayFxDelegate() As String Public Class CGridSearch Public Function CalcOptim(ByVal nNumVars As Integer, ByRef fXCenter() As Double, ByRef fParam() As Double, _ ByRef fXLo() As Double, ByRef fXHi() As Double, ByRef nNumDiv() As Integer, _ ByRef fMinDeltaX() As Double, ByVal fEpsFx As Double, ByRef nIter As Integer, _ ByVal MyFx As MyFxDelegate) As Double Dim fDeltaX(), fX(), fBestX() As Double Dim F, fBestF, fLastBestF As Double Dim I As Integer Dim bGoOn As Boolean ReDim fDeltaX(nNumVars), fX(nNumVars), fBestX(nNumVars) For I = 0 To nNumVars - 1 fXCenter(I) = (fXLo(I) + fXHi(I)) / 2 fBestX(I) = fXCenter(I) fDeltaX(I) = (fXHi(I) - fXLo(I)) / nNumDiv(I) fX(I) = fXLo(I) Next ' calculate and display function value at initial point fBestF = MyFx(nNumVars, fXCenter, fParam) If fBestF > 0 Then fLastBestF = 100 + fBestF Else fLastBestF = 100 - fBestF End If nIter = 0 Do Do nIter += 1 F = MyFx(nNumVars, fX, fParam) If F < fBestF Then fLastBestF = fBestF fBestF = F For I = 0 To nNumVars - 1 fBestX(I) = fX(I) Next I End If '***************************************************** ' The next For loop implements a programming tricks ' that simulated nested loops using just one For loop '***************************************************** ' search next grid node For I = 0 To nNumVars - 1 If fX(I) >= fXHi(I) Then If I < (nNumVars - 1) Then fX(I) = fXLo(I) Else Exit Do End If Else fX(I) += fDeltaX(I) Exit For End If Next I Loop For I = 0 To nNumVars - 1 fXCenter(I) = fBestX(I) fDeltaX(I) = fDeltaX(I) / nNumDiv(I) fXLo(I) = fXCenter(I) - fDeltaX(I) * nNumDiv(I) / 2 fXHi(I) = fXCenter(I) + fDeltaX(I) * nNumDiv(I) / 2 fX(I) = fXLo(I) ' set initial fX Next I ' fBestF = MyFx(XCenter, N) bGoOn = False For I = 0 To nNumVars - 1 If fDeltaX(I) > fMinDeltaX(I) Then bGoOn = True Next I bGoOn = bGoOn And (Math.Abs(fBestF - fLastBestF) > fEpsFx) Loop While bGoOn Return fBestF End Function End Class
Copyright (c) Namir Shammas. All rights reserved.