The following program calculates the minimum point of a multi-variable function using the Hooke-Jeeves directional search method.
Click here to download a ZIP file containing the project files for this program.
The program prompts you to either use the predefined default input values or to enter the following for each variable:
1. Guess for the minimum point.
2. Initial search step value.
3. The minimum search step value.
In case you choose the default input values, the program displays these values and proceeds to find the optimum point. In the case you select being prompted, the program displays the name of each input variable along with its default value. You can then either enter a new value or simply press Enter to use the default value. This approach allows you to quickly and efficiently change only a few input values if you so desire.
The program displays the following final results:
1. The coordinates of the minimum value.
2. The minimum function value.
3. The number of iterations
The current code finds the minimum for the following function:
f(x1,x2) = x1 - x2 + 2 * x1 ^ 2 + 2 * x1 * x2 + x2 ^ 2
Using, for each variable, an initial value of 0, initial step size of 0.1, minimum step size of 1e-7, and using a function tolerance of 1e-7. Here is the sample console screen:
Here is the listing for the main module. The module contains several test functions:
Module Module1 Sub Main() Dim nNumVars As Integer = 2 Dim fX() As Double = {0, 0} Dim fParam() As Double = {0, 0} Dim fStepSize() As Double = {0.1, 0.1} Dim fMinStepSize() As Double = {0.0000001, 0.0000001} Dim nIter As Integer = 0 Dim fEpsFx As Double = 0.0000001 Dim I As Integer Dim fBestF Dim sAnswer As String Dim oOpt As CHookJeevesSearch1 Dim MyFx As MyFxDelegate = AddressOf Fx3 Dim SayFx As SayFxDelegate = AddressOf SayFx3 oOpt = New CHookJeevesSearch1 Console.WriteLine("Hooke-Jeeves Search Optimization") Console.WriteLine("Finding the minimum of function:") Console.WriteLine(SayFx()) Console.Write("Use default input values? (Y/N) ") sAnswer = Console.ReadLine() If sAnswer.ToUpper() = "Y" Then For I = 0 To nNumVars - 1 Console.WriteLine("X({0}) = {1}", I + 1, fX(I)) Console.WriteLine("Step size({0}) = {1}", I + 1, fStepSize(I)) Console.WriteLine("Min step Size ({0}) = {1}", I + 1, fMinStepSize(I)) Next Console.WriteLine("Function tolerance = {0}", fEpsFx) Else For I = 0 To nNumVars - 1 fX(I) = GetIndexedDblInput("X", I + 1, fX(I)) fStepSize(I) = GetIndexedDblInput("Step size", I + 1, fStepSize(I)) fMinStepSize(I) = GetIndexedDblInput("Min step size", I + 1, fMinStepSize(I)) Next fEpsFx = GetDblInput("Function tolerance", fEpsFx) End If Console.WriteLine("******** FINAL RESULTS *************") fBestF = oOpt.CalcOptim(nNumVars, fX, fParam, fStepSize, fMinStepSize, fEpsFx, nIter, MyFx) Console.WriteLine("Optimum at") For I = 0 To nNumVars - 1 Console.WriteLine("X({0}) = {1}", I + 1, fX(I)) Next Console.WriteLine("Function value = {0}", fBestF) Console.WriteLine("Number of iterations = {0}", nIter) Console.WriteLine() Console.Write("Press Enter to end the program ...") Console.ReadLine() End Sub Function GetDblInput(ByVal sPrompt As String, ByVal fDefInput As Double) As Double Dim sInput As String Console.Write("{0}? ({1}): ", sPrompt, fDefInput) sInput = Console.ReadLine() If sInput.Trim().Length > 0 Then Return Double.Parse(sInput) Else Return fDefInput End If End Function Function GetIntInput(ByVal sPrompt As String, ByVal nDefInput As Integer) As Integer Dim sInput As String Console.Write("{0}? ({1}): ", sPrompt, nDefInput) sInput = Console.ReadLine() If sInput.Trim().Length > 0 Then Return Double.Parse(sInput) Else Return nDefInput End If End Function Function GetIndexedDblInput(ByVal sPrompt As String, ByVal nIndex As Integer, ByVal fDefInput As Double) As Double Dim sInput As String Console.Write("{0}({1})? ({2}): ", sPrompt, nIndex, fDefInput) sInput = Console.ReadLine() If sInput.Trim().Length > 0 Then Return Double.Parse(sInput) Else Return fDefInput End If End Function Function GetIndexedIntInput(ByVal sPrompt As String, ByVal nIndex As Integer, ByVal nDefInput As Integer) As Integer Dim sInput As String Console.Write("{0}({1})? ({2}): ", sPrompt, nIndex, nDefInput) sInput = Console.ReadLine() If sInput.Trim().Length > 0 Then Return Double.Parse(sInput) Else Return nDefInput End If End Function Function SayFx1() As String Return "F(X) = 10 + (X(1) - 2) ^ 2 + (X(2) + 5) ^ 2" End Function Function Fx1(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double Return 10 + (X(0) - 2) ^ 2 + (X(1) + 5) ^ 2 End Function Function SayFx2() As String Return "F(X) = 100 * (X(1) - X(2) ^ 2) ^ 2 + (X(2) - 1) ^ 2" End Function Function Fx2(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double Return 100 * (X(0) - X(1) ^ 2) ^ 2 + (X(1) - 1) ^ 2 End Function Function SayFx3() As String Return "F(X) = X(1) - X(2) + 2 * X(1) ^ 2 + 2 * X(1) * X(2) + X(2) ^ 2" End Function Function Fx3(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double Return X(0) - X(1) + 2 * X(0) ^ 2 + 2 * X(0) * X(1) + X(1) ^ 2 End Function ' X(0) - X(1) + 2 * X(0) ^ 2 + 2 * X(0) * X(1) + X(1) ^ 2 End Module
Notice that the user-defined functions have accompanying helper functions to display the mathematical expression of the function being optimized. For example, function Fx1 has the helper function SayFx1 to list the function optimized in Fx1. Please observe the following rules::
The program uses the following class to optimize the objective function:
Public Delegate Function MyFxDelegate(ByVal nNumVars As Integer, ByRef fX() As Double, ByRef fParam() As Double) As Double Public Delegate Function SayFxDelegate() As String Public Class CHookJeevesSearch1 Dim m_MyFx As MyFxDelegate Protected Function MyFxEx(ByVal nNumVars As Integer, _ ByRef fX() As Double, ByRef fParam() As Double, _ ByRef fDeltaX() As Double, ByVal fLambda As Double) As Double Dim I As Integer Dim fXX(nNumVars) As Double For I = 0 To nNumVars - 1 fXX(I) = fX(I) + fLambda * fDeltaX(I) Next I MyFxEx = m_MyFx(nNumVars, fXX, fParam) End Function Protected Function LinSearch_DirectSearch(ByVal nNumVars As Integer, ByRef fX() As Double, ByRef fParam() As Double, _ ByRef fLambda As Double, ByRef fDeltaX() As Double, ByVal fInitStep As Double, ByVal fMinStep As Double) As Boolean Dim F1, F2 As Double F1 = MyFxEx(nNumVars, fX, fParam, fDeltaX, fLambda) Do F2 = MyFxEx(nNumVars, fX, fParam, fDeltaX, fLambda + fInitStep) If F2 < F1 Then F1 = F2 fLambda += fInitStep Else F2 = MyFxEx(nNumVars, fX, fParam, fDeltaX, fLambda - fInitStep) If F2 < F1 Then F1 = F2 fLambda -= fInitStep Else ' reduce search step size fInitStep /= 10 End If End If Loop Until fInitStep < fMinStep Return True End Function Public Function CalcOptim(ByVal nNumVars As Integer, ByRef fX() As Double, ByRef fParam() As Double, _ ByRef fStepSize() As Double, ByRef fMinStepSize() As Double, ByVal fEpsFx As Double, _ ByRef nIter As Integer, ByVal MyFx As MyFxDelegate) As Double Dim I As Integer Dim fXnew(nNumVars) As Double Dim fDeltaX(nNumVars) As Double Dim F As Double, fXX As Double, fLambda As Double Dim fBestF, fLastBestF As Double Dim bStop, bMadeAnyMove As Boolean, bMoved(nNumVars) As Boolean m_MyFx = MyFx For I = 0 To nNumVars - 1 fXnew(I) = fX(I) Next ' calculate function value at initial point fBestF = MyFx(nNumVars, fXnew, fParam) fLastBestF = 100 * fBestF + 100 nIter = 1 Do nIter += 1 For I = 0 To nNumVars - 1 fX(I) = fXnew(I) Next I For I = 0 To nNumVars - 1 bMoved(I) = False Do fXX = fXnew(I) fXnew(I) = fXX + fStepSize(I) F = MyFx(nNumVars, fXnew, fParam) If F < fBestF Then fBestF = F bMoved(I) = True Else fXnew(I) = fXX - fStepSize(I) F = MyFx(nNumVars, fXnew, fParam) If F < fBestF Then fBestF = F bMoved(I) = True Else fXnew(I) = fXX Exit Do End If End If Loop Next I ' moved in any direction? bMadeAnyMove = True For I = 0 To nNumVars - 1 If Not bMoved(I) Then bMadeAnyMove = False Exit For End If Next I If bMadeAnyMove Then For I = 0 To nNumVars - 1 fDeltaX(I) = fXnew(I) - fX(I) Next I fLambda = 0 If LinSearch_DirectSearch(nNumVars, fX, fParam, fLambda, fDeltaX, 0.1, 0.0001) Then For I = 0 To nNumVars - 1 fXnew(I) = fX(I) + fLambda * fDeltaX(I) Next I End If End If fBestF = MyFx(nNumVars, fXnew, fParam) ' reduce the step size for the dimensions that had no moves For I = 0 To nNumVars - 1 If Not bMoved(I) Then fStepSize(I) /= 2 Next I ' test function value convergence If Math.Abs(fBestF - fLastBestF) < fEpsFx Then Exit Do fLastBestF = fBestF bStop = True For I = 0 To nNumVars - 1 If fStepSize(I) >= fMinStepSize(I) Then bStop = False Exit For End If Next I Loop Until bStop For I = 0 To nNumVars - 1 fX(I) = fXnew(I) Next I Return fBestF End Function End Class
Copyright (c) Namir Shammas. All rights reserved.