The following program calculates the minimum point of a multi-variable function using Newton's method. This method is implemented in a basic form without any enhancements.
Click here to download a ZIP file containing the project files for this program.
The program prompts you to either use the predefined default input values or to enter the following:
1. The values for the initial set of variables
2. The values for the tolerances for each variable.
3. The function tolerance
4. The maximum number of iterations
In case you choose the default input values, the program displays these values and proceeds to find the optimum point. In the case you select being prompted, the program displays the name of each input variable along with its default value. You can then either enter a new value or simply press Enter to use the default value. This approach allows you to quickly and efficiently change only a few input values if you so desire.
The program displays the following final results:
1. The coordinates of the minimum value.
2. The fine step sizes for each variable.
3. The minimum function value.
4. The number of iterations
The current code finds the minimum for the following function:
f(x1,x2) = x1 - x2 + 2 * x1 ^ 2 + 2 * x1 * x2 + x2 ^ 2
Using, for each variable, an initial value of 0, initial step size of 0.1, minimum step size of 1e-7, and using a function tolerance of 1e-7. Here is the sample console screen:
Here is the listing for the main module. The module contains several test functions:
Module Module1 Sub Main() Dim nNumVars As Integer = 2 Dim fX() As Double = {0, 0} Dim fParam() As Double = {0, 0} Dim fToler() As Double = {0.00001, 0.00001} Dim nIter As Integer = 0 Dim nMaxIter As Integer = 100 Dim fEpsFx As Double = 0.0000001 Dim I As Integer Dim fBestF As Double Dim sAnswer As String, sErrorMsg As String = "" Dim oOpt As COptimNewton1 Dim MyFx As MyFxDelegate = AddressOf Fx3 Dim SayFx As SayFxDelegate = AddressOf SayFx3 oOpt = New COptimNewton1 Console.WriteLine("Newton's Method for Optimization (basic version)") Console.WriteLine("Finding the minimum of function:") Console.WriteLine(SayFx()) Console.Write("Use default input values? (Y/N) ") sAnswer = Console.ReadLine() If sAnswer.ToUpper() = "Y" Then For I = 0 To nNumVars - 1 Console.WriteLine("X({0}) = {1}", I + 1, fX(I)) Console.WriteLine("Tolerance({0}) = {1}", I + 1, fToler(I)) Next Console.WriteLine("Function tolerance = {0}", fEpsFx) Console.WriteLine("Maxumum cycles = {0}", nMaxIter) Else For I = 0 To nNumVars - 1 fX(I) = GetIndexedDblInput("X", I + 1, fX(I)) fToler(I) = GetIndexedDblInput("Tolerance", I + 1, fToler(I)) Next fEpsFx = GetDblInput("Function tolerance", fEpsFx) nMaxIter = GetIntInput("Maxumum cycles", nMaxIter) End If Console.WriteLine("******** FINAL RESULTS *************") fBestF = oOpt.CalcOptim(nNumVars, fX, fParam, fToler, fEpsFx, nMaxIter, nIter, sErrorMsg, MyFx) If sErrorMsg.Length > 0 Then Console.WriteLine("** NOTE: {0} ***", sErrorMsg) End If Console.WriteLine("Optimum at") For I = 0 To nNumVars - 1 Console.WriteLine("X({0}) = {1}", I + 1, fX(I)) Next Console.WriteLine("Function value = {0}", fBestF) Console.WriteLine("Number of iterations = {0}", nIter) Console.WriteLine() Console.Write("Press Enter to end the program ...") Console.ReadLine() End Sub Function GetDblInput(ByVal sPrompt As String, ByVal fDefInput As Double) As Double Dim sInput As String Console.Write("{0}? ({1}): ", sPrompt, fDefInput) sInput = Console.ReadLine() If sInput.Trim().Length > 0 Then Return Double.Parse(sInput) Else Return fDefInput End If End Function Function GetIntInput(ByVal sPrompt As String, ByVal nDefInput As Integer) As Integer Dim sInput As String Console.Write("{0}? ({1}): ", sPrompt, nDefInput) sInput = Console.ReadLine() If sInput.Trim().Length > 0 Then Return Integer.Parse(sInput) Else Return nDefInput End If End Function Function GetIndexedDblInput(ByVal sPrompt As String, ByVal nIndex As Integer, ByVal fDefInput As Double) As Double Dim sInput As String Console.Write("{0}({1})? ({2}): ", sPrompt, nIndex, fDefInput) sInput = Console.ReadLine() If sInput.Trim().Length > 0 Then Return Double.Parse(sInput) Else Return fDefInput End If End Function Function GetIndexedIntInput(ByVal sPrompt As String, ByVal nIndex As Integer, ByVal nDefInput As Integer) As Integer Dim sInput As String Console.Write("{0}({1})? ({2}): ", sPrompt, nIndex, nDefInput) sInput = Console.ReadLine() If sInput.Trim().Length > 0 Then Return Integer.Parse(sInput) Else Return nDefInput End If End Function Function SayFx1() As String Return "F(X) = 10 + (X(1) - 2) ^ 2 + (X(2) + 5) ^ 2" End Function Function Fx1(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double Return 10 + (X(0) - 2) ^ 2 + (X(1) + 5) ^ 2 End Function Function SayFx2() As String Return "F(X) = 100 * (X(1) - X(2) ^ 2) ^ 2 + (X(2) - 1) ^ 2" End Function Function Fx2(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double Return 100 * (X(0) - X(1) ^ 2) ^ 2 + (X(1) - 1) ^ 2 End Function Function SayFx3() As String Return "F(X) = X(1) - X(2) + 2 * X(1) ^ 2 + 2 * X(1) * X(2) + X(2) ^ 2" End Function Function Fx3(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double Return X(0) - X(1) + 2 * X(0) ^ 2 + 2 * X(0) * X(1) + X(1) ^ 2 End Function End Module
Notice that the user-defined functions have accompanying helper functions to display the mathematical expression of the function being optimized. For example, function Fx1 has the helper function SayFx1 to list the function optimized in Fx1. Please observe the following rules::
The program uses the following class to optimize the objective function:
Public Delegate Function MyFxDelegate(ByVal nNumVars As Integer, ByRef fX() As Double, ByRef fParam() As Double) As Double Public Delegate Function SayFxDelegate() As String Public Class COptimNewton1 Dim m_MyFx As MyFxDelegate Protected Function MyFxEx(ByVal nNumVars As Integer, _ ByRef fX() As Double, ByRef fParam() As Double, _ ByRef fDeltaX() As Double, ByVal fLambda As Double) As Double Dim I As Integer Dim fXX(nNumVars) As Double For I = 0 To nNumVars - 1 fXX(I) = fX(I) + fLambda * fDeltaX(I) Next I MyFxEx = m_MyFx(nNumVars, fXX, fParam) End Function Protected Function FirstDeriv(ByVal nNumVars As Integer, _ ByRef fX() As Double, ByRef fParam() As Double, _ ByVal nIdxI As Integer) As Double Dim fXt, h, Fp, Fm As Double fXt = fX(nIdxI) h = 0.01 * (1 + Math.Abs(fXt)) fX(nIdxI) = fXt + h Fp = m_MyFx(nNumVars, fX, fParam) fX(nIdxI) = fXt - h Fm = m_MyFx(nNumVars, fX, fParam) fX(nIdxI) = fXt FirstDeriv = (Fp - Fm) / 2 / h End Function Protected Function SecondDeriv(ByVal nNumVars As Integer, _ ByRef fX() As Double, ByRef fParam() As Double, _ ByVal nIdxI As Integer, ByVal nIdxJ As Integer) As Double Dim fXt, fYt, fHX, fHY, F0, Fp, Fm As Double Dim Fpp, Fmm, Fpm, Fmp, fResult As Double ' calculate second derivative? If nIdxI = nIdxJ Then F0 = m_MyFx(nNumVars, fX, fParam) fXt = fX(nIdxI) fHX = 0.01 * (1 + Math.Abs(fXt)) fX(nIdxI) = fXt + fHX Fp = m_MyFx(nNumVars, fX, fParam) fX(nIdxI) = fXt - fHX Fm = m_MyFx(nNumVars, fX, fParam) fX(nIdxI) = fXt fResult = (Fp - 2 * F0 + Fm) / fHX ^ 2 Else fXt = fX(nIdxI) fYt = fX(nIdxJ) fHX = 0.01 * (1 + Math.Abs(fXt)) fHY = 0.01 * (1 + Math.Abs(fYt)) ' calculate Fpp fX(nIdxI) = fXt + fHX fX(nIdxJ) = fYt + fHY Fpp = m_MyFx(nNumVars, fX, fParam) ' calculate Fmm fX(nIdxI) = fXt - fHX fX(nIdxJ) = fYt - fHY Fmm = m_MyFx(nNumVars, fX, fParam) ' calculate Fpm fX(nIdxI) = fXt + fHX fX(nIdxJ) = fYt - fHY Fpm = m_MyFx(nNumVars, fX, fParam) ' calculate Fmp fX(nIdxI) = fXt - fHX fX(nIdxJ) = fYt + fHY Fmp = m_MyFx(nNumVars, fX, fParam) fX(nIdxI) = fXt fX(nIdxJ) = fYt fResult = (Fpp - Fmp - Fpm + Fmm) / (4 * fHX * fHY) End If Return fResult End Function Protected Sub GetFirstDerives(ByVal nNumVars As Integer, _ ByRef fX() As Double, ByRef fParam() As Double, _ ByRef fFirstDerivX() As Double) Dim I As Integer For I = 0 To nNumVars - 1 fFirstDerivX(I) = FirstDeriv(nNumVars, fX, fParam, I) Next I End Sub Protected Sub GetSecondDerives(ByVal nNumVars As Integer, _ ByRef fX() As Double, ByRef fParam() As Double, _ ByRef fSecondDerivX(,) As Double) Dim I, J As Integer For I = 0 To nNumVars - 1 For J = 0 To nNumVars - 1 fSecondDerivX(I, J) = SecondDeriv(nNumVars, fX, fParam, I, J) Next J Next I End Sub Public Function CalcOptim(ByVal nNumVars As Integer, ByRef fX() As Double, ByRef fParam() As Double, _ ByRef fToler() As Double, ByVal fEpsFx As Double, ByVal nMaxIter As Integer, _ ByRef nIter As Integer, ByRef sErrorMsg As String, _ ByVal MyFx As MyFxDelegate) As Double Dim I As Integer Dim fNorm As Double Dim g(nNumVars) As Double, Index(nNumVars) As Integer Dim DeltaX(nNumVars) As Double, J(nNumVars, nNumVars) As Double Dim bStop As Boolean m_MyFx = MyFx nIter = 1 Do nIter += 1 If nIter > nMaxIter Then sErrorMsg = "Reached maximum iterations limit" Exit Do End If GetFirstDerives(nNumVars, fX, fParam, g) ' test if gradient is shallow enough fNorm = MatrixLibVb.VectNorm(g) If fNorm < fEpsFx Then Exit Do GetSecondDerives(nNumVars, fX, fParam, J) MatrixLibVb.MV_LUDecomp(J, Index, nNumVars) MatrixLibVb.MV_LUBackSubst(J, Index, nNumVars, g) For I = 0 To nNumVars - 1 DeltaX(I) = g(I) fX(I) -= DeltaX(I) Next I bStop = True For I = 0 To nNumVars - 1 If Math.Abs(DeltaX(I)) > fToler(I) Then bStop = False Exit For End If Next I Loop Until bStop Return MyFx(nNumVars, fX, fParam) End Function End Class
Copyright (c) Namir Shammas. All rights reserved.