VB.Net Program to Find a Function Minimum

Using a Random Search Method

by Namir Shammas

The following program calculates the minimum point of a multi-variable function using random search method coupled with a linear search. The latter part enhances significantly the efficiency of the random walk.

Click here to download a ZIP file containing the project files for this program.

The program prompts you to either use the predefined default input values or to enter the following:

1. Minimum value for each variable:.

2. Maximum value for each variable:.

3. The maximum number of iterations per cycle.

In case you choose the default input values, the program displays these values and proceeds to find the optimum point. In the case you select being prompted, the program displays the name of each input variable along with its default value. You can then either enter a new value or simply press Enter to use the default value. This approach allows you to quickly and efficiently change only a few input values if you so desire.

The program displays the following results:

1. The coordinates of the minimum value.

2. The minimum function value.

3. The number of iterations

4. The function tolerance.

Here is a sample session to find the minimum of function:

f(x) = x1 - x2 + 2 * x1 ^ 2 + 2 * x1 * x2 + x2 ^ 2

Using the initial value of 0, range of (-5, 5) for each variable, and using a maximum number of 1000000 iterations and a function tolerance of 1e-7. Here is the sample console screen:

Here is the BASIC listing for the main module. The module contains several test functions:

Module Module1

  Sub Main()
    Dim nNumVars As Integer = 2
    Dim fX() As Double = {0, 0}
    Dim fParam() As Double = {0, 0}
    Dim fXlo() As Double = {-5, -5}
    Dim fXHi() As Double = {5, 5}
    Dim fEpsFx As Double = 0.0000001
    Dim nIter As Integer = 0, nMaxIter As Integer = 1000000
    Dim I As Integer
    Dim fBestF As Double
    Dim sAnswer As String
    Dim oOpt As CRandomSearch2
    Dim MyFx As MyFxDelegate = AddressOf Fx3
    Dim SayFx As SayFxDelegate = AddressOf SayFx3

    oOpt = New CRandomSearch2

    Console.WriteLine("Random Search (with linear search) Optimization")
    Console.WriteLine("Finding the minimum of function:")
    Console.WriteLine(SayFx())
    Console.Write("Use default input values? (Y/N) ")
    sAnswer = Console.ReadLine()
    If sAnswer.ToUpper() = "Y" Then
      For I = 0 To nNumVars - 1
        Console.WriteLine("X({0}) = {1}", I + 1, fX(I))
        Console.WriteLine("X low({0}) = {1}", I + 1, fXlo(I))
        Console.WriteLine("X high({0}) = {1}", I + 1, fXHi(I))
      Next
      Console.WriteLine("Maximum iterations = {0}", nMaxIter)
      Console.WriteLine("Function tolerance = {0}", fEpsFx)
    Else
      For I = 0 To nNumVars - 1
        fX(I) = GetIndexedDblInput("X", I + 1, fX(I))
        fXlo(I) = GetIndexedDblInput("X Low", I + 1, fXlo(I))
        fXHi(I) = GetIndexedDblInput("X High", I + 1, fXHi(I))
      Next
      nMaxIter = GetIntInput("Maximum iterations", nMaxIter)
      fEpsFx = GetDblInput("Function tolerance", fEpsFx)
    End If

    Console.WriteLine("******** FINAL RESULTS *************")
    fBestF = oOpt.CalcOptim(nNumVars, fX, fParam, fXlo, fXHi, nMaxIter, fEpsFx, nIter, MyFx)
    Console.WriteLine("Optimum at")
    For I = 0 To nNumVars - 1
      Console.WriteLine("X({0}) = {1}", I + 1, fX(I))
    Next
    Console.WriteLine("Function value = {0}", fBestF)
    Console.WriteLine("Number of iterations = {0}", nIter)
    Console.WriteLine()
    Console.Write("Press Enter to end the program")
    Console.ReadLine()
  End Sub

  Function GetDblInput(ByVal sPrompt As String, ByVal fDefInput As Double) As Double
    Dim sInput As String

    Console.Write("{0}? ({1}): ", sPrompt, fDefInput)
    sInput = Console.ReadLine()
    If sInput.Trim().Length > 0 Then
      Return Double.Parse(sInput)
    Else
      Return fDefInput
    End If
  End Function

  Function GetIntInput(ByVal sPrompt As String, ByVal nDefInput As Integer) As Integer
    Dim sInput As String

    Console.Write("{0}? ({1}): ", sPrompt, nDefInput)
    sInput = Console.ReadLine()
    If sInput.Trim().Length > 0 Then
      Return Double.Parse(sInput)
    Else
      Return nDefInput
    End If
  End Function

  Function GetIndexedDblInput(ByVal sPrompt As String, ByVal nIndex As Integer, ByVal fDefInput As Double) As Double
    Dim sInput As String

    Console.Write("{0}({1})? ({2}): ", sPrompt, nIndex, fDefInput)
    sInput = Console.ReadLine()
    If sInput.Trim().Length > 0 Then
      Return Double.Parse(sInput)
    Else
      Return fDefInput
    End If
  End Function

  Function SayFx1() As String
    Return "F(X) = 10 + (X(1) - 2) ^ 2 + (X(2) + 5) ^ 2"
  End Function

  Function Fx1(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double
    Return 10 + (X(0) - 2) ^ 2 + (X(1) + 5) ^ 2
  End Function

  Function SayFx2() As String
    Return "F(X) = 100 * (X(1) - X(2) ^ 2) ^ 2 + (X(2) - 1) ^ 2"
  End Function

  Function Fx2(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double
    Return 100 * (X(0) - X(1) ^ 2) ^ 2 + (X(1) - 1) ^ 2
  End Function

  Function SayFx3() As String
    Return "F(X) = X(1) - X(2) + 2 * X(1) ^ 2 + 2 * X(1) * X(2) + X(2) ^ 2"
  End Function

  Function Fx3(ByVal N As Integer, ByRef X() As Double, ByRef fParam() As Double) As Double
    Return X(0) - X(1) + 2 * X(0) ^ 2 + 2 * X(0) * X(1) + X(1) ^ 2
  End Function

End Module

Notice that the user-defined functions have accompanying helper functions to display the mathematical expression of the function being optimized. For example, function Fx1 has the helper function SayFx1 to list the function optimized in Fx1. Please observe the following rules::

The program uses the following class to optimize the objective function:

Public Delegate Function MyFxDelegate(ByVal nNumVars As Integer, ByRef fX() As Double, ByRef fParam() As Double) As Double
Public Delegate Function SayFxDelegate() As String

Public Class CRandomSearch2
  Dim m_MyFx As MyFxDelegate

  Protected Function MyFxEx(ByVal N As Integer, ByRef fX() As Double, ByRef fParam() As Double, _
                            ByRef fDeltaX() As Double, ByVal fLambda As Double) As Double
    Dim I As Integer
    Dim fX2() As Double

    ReDim fX2(N)

    For I = 0 To N - 1
      fX2(I) = fX(I) + fLambda * fDeltaX(I)
    Next I

    Return m_MyFx(N, fX2, fParam)
  End Function

  Protected Function LinSearch_DirectSearch(ByVal N As Integer, ByRef fX() As Double, ByRef fParam() As Double, _
            ByRef fLambda As Double, ByRef fDeltaX() As Double, ByVal fInittep As Double, ByVal fMinStep As Double) As Boolean
    Dim F1 As Double, F2 As Double

    F1 = MyFxEx(N, fX, fParam, fDeltaX, fLambda)

    Do
      F2 = MyFxEx(N, fX, fParam, fDeltaX, fLambda + fInittep)
      If F2 < F1 Then
        F1 = F2
        fLambda = fLambda + fInittep
      Else
        F2 = MyFxEx(N, fX, fParam, fDeltaX, fLambda - fInittep)
        If F2 < F1 Then
          F1 = F2
          fLambda = fLambda - fInittep
        Else
          ' reduce search step size
          fInittep = fInittep / 10
        End If
      End If
    Loop Until fInittep < fMinStep

    LinSearch_DirectSearch = True

  End Function

  Public Function CalcOptim(ByVal nNumVars As Integer, ByRef fX() As Double, ByRef fParam() As Double, _
                            ByRef fXLo() As Double, ByRef fXHi() As Double, _
                            ByVal nMaxIter As Integer, ByVal EpsFx As Double, _
                            ByRef nIter As Integer, ByVal MyFx As MyFxDelegate) As Double

    Dim fDeltaX() As Double
    Dim fInitStep As Double = 0.1, fMinStep As Double = 0.00001

    Dim F, fBestF, fBestX(), fLastBestF, fLambda As Double
    Dim I As Integer

    ReDim fDeltaX(nNumVars)
    m_MyFx = MyFx
    ReDim fBestX(nNumVars)

    For I = 0 To nNumVars - 1
      fBestX(I) = fX(I)
    Next
    ' calculate and display function value at initial point
    fBestF = MyFx(nNumVars, fBestX, fParam)
    If fBestF > 0 Then
      fLastBestF = fBestF + 100
    Else
      fLastBestF = 100 - fBestF
    End If

    nIter = 0
    Do
      nIter += 1
      If nIter > nMaxIter Then Exit Do
      Randomize(Timer)
      For I = 0 To nNumVars - 1
        fX(I) = fXLo(I) + Rnd(1) * (fXHi(I) - fXLo(I))
        fDeltaX(I) = fX(I) - fBestX(I)
      Next
      fLambda = 0.1
      LinSearch_DirectSearch(nNumVars, fBestX, fParam, fLambda, fDeltaX, fInitStep, fMinStep)
      For I = 0 To nNumVars - 1
        fX(I) = fBestX(I) + fLambda * fDeltaX(I)
      Next
      F = MyFx(nNumVars, fX, fParam)
      If F < fBestF Then
        For I = 0 To nNumVars - 1
          fBestX(I) = fX(I)
        Next
        fBestF = F

        ' test function value convergence
        If Math.Abs(fBestF - fLastBestF) < EpsFx Then Exit Do
        fLastBestF = fBestF
      End If
    Loop

    Return fBestF

  End Function
End Class

BACK

Copyright (c) Namir Shammas. All rights reserved.